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Executive Summary 

ToxStrategies conducted a comprehensive literature review on the factors and conditions 
causing and contributing to cyanobacterial blooms, as well as their toxin production and 
release, especially as they relate to Texas surface waters. This report discusses the various 
environmental factors and their complex relationships with cyanobacteria and their 
toxins. However, environmental factors discussed are general in nature, and there can be 
significant variability among waterbodies, even within the same region. Drinking water 
treatment methods and Texas case studies are presented as well. 

Cyanobacteria, also known as “blue-green algae,” occur in surface waters worldwide. 
Cyanobacterial toxins, or “cyanotoxins,” released from cyanobacteria can harm the 
health of animals and humans. Cyanobacterial blooms are typically associated with 
eutrophication, which is enhanced biological production in surface waterbodies as a 
result of increased nutrient loads. When cyanobacteria in these bloom events lyse, they 
release their cyanotoxins. Cyanobacteria have been found throughout water columns as 
planktonic species, where they can aggregate during blooms, as well as in the benthos 
as mats. Historically, they have been considered as algae, given their morphologies. 
However, morphology alone is insufficient to identify cyanobacteria, and phylogenetic 
molecular techniques have become the standard for identification. Improved and 
expanded phylogenetic profiling continues with the evolution of cyanobacterial 
taxonomy.  

Nutrient concentrations are important environmental factors that promote 
cyanobacterial growth. Nutrients, namely phosphorus and nitrogen, enter a waterbody 
from point sources, such as discharges and outfalls, and nonpoint sources, such as 
surface runoff and groundwater inflow. Phosphorus is frequently considered to be rate 
limiting because many cyanobacteria can fix nitrogen from the atmosphere, but 
nitrogen concentrations can also affect cyanobacterial growth. Cyanobacteria can use 
multiple forms of nitrogen, and they can store phosphorus internally to give them an 
advantage when external phosphorus concentrations are low.  

Other important environmental factors include light availability, temperature, 
waterbody hydrodynamics, pH, and salinity. Some cyanobacteria have lower light 
requirements than other phytoplankton, and they have multiple pigments that allow 
them to harvest light at wavelengths unusable to their non-cyanobacteria competitors. 
Planktonic cyanobacteria contain gas vesicles that make them buoyant and enable them 
to remain in the euphotic zone. Some, but not all, cyanobacteria thrive at higher 
temperatures. Many cyanobacteria have overwintering capabilities in which they can 
bloom in cold temperatures to keep waters turbid or produce akinetes (dormant cells) 
that germinate when warm temperatures return. Higher temperatures promote thermal 
stratification in a waterbody and affect its mixing depth, enabling buoyant 
cyanobacteria to maintain their access to light. In addition, cyanobacteria that grow 



 
 

 2 

slowly tend to favor waterbodies with long residence times. Large cyanobacterial 
blooms can raise the pH of a waterbody during photosynthesis because they use a 
variety of methods to take up inorganic carbon, and some cyanobacteria can grow more 
successfully at higher pH levels than other phytoplankton. Many cyanobacteria are also 
resistant to osmotic shock and can survive in higher salinities.  

Other organisms interact with cyanobacteria. Many cyanobacteria are resistant to 
grazing by zooplankton because of their toxicity, filament or colony size, or low 
nutrition. Blooms can also provide a refuge for small fish that consume zooplankton, 
reducing their grazing pressure. In particular, zebra mussels selectively reject feeding on 
cyanobacteria when grazing on phytoplankton, thus giving cyanobacteria a competitive 
advantage. Zebra mussels can also act as a sink and a source of phosphorus as they 
mobilize iron-bound phosphorus from sediments. Furthermore, as zebra mussels uptake 
calcium, they affect waterbody chemistry by reducing alkalinity, which may give 
cyanobacteria an advantage. 

Cyanobacterial populations and behaviors can vary with environmental conditions, even 
at a local scale. Although multiple studies have attempted to tie regional climate and 
meteorological conditions to cyanobacteria and cyanotoxin production, variability exists 
even among waterbodies that are near each other. 

Cyanobacteria strains that possess the appropriate genes produce cyanotoxins, and they 
can co-exist with nontoxic strains. Cyanobacteria within a given species can produce 
multiple toxins. The amount of cyanotoxin in a given strain can also vary, and seasonal 
patterns of cyanotoxin production fluctuate among waterbodies. It has been 
hypothesized that environmental conditions may affect whether genes related to 
cyanotoxin production are upregulated, but this is not yet well understood. Even if 
nontoxic clones dominate a given bloom, the toxic clones present may still produce 
toxins in excess of acceptable limits. Nevertheless, in general, factors that affect 
cyanobacterial growth are also relevant to their effects on cyanotoxin production. 

Cyanotoxins may present health concerns to humans as hepatotoxins, dermatoxins, and 
neurotoxins when they are released from cyanobacterial cells. This release typically 
follows cell lysis when the toxins enter surface waterbodies that are used for drinking 
water or recreational activities, resulting in incidental ingestion. When adjusting the 
drinking water source intake to avoid cyanobacterial blooms is impractical, drinking 
water must be treated to remove intracellular (intact cyanobacteria) and extracellular 
cyanotoxins. Conventional treatment methods may remove cyanobacterial cells and 
extracellular cyanotoxins, although an integrated approach using multiple methods is 
often preferred. Drinking water treatment efficacy varies among extracellular 
cyanotoxins depending on their chemical and physical properties. Coagulation, 
flocculation, sedimentation, and filtration are often effective at removing intact cells but 
must be optimized for specific blooms. Dissolved air flotation is useful for removing 
cyanobacteria with low densities and high buoyancy. Membrane filtration can remove 
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cyanobacterial cells, and nanofiltration and reverse osmosis can also remove 
cyanotoxins. Because oxidation at the beginning of a drinking water treatment process 
has the potential to lyse cyanobacterial cells, treatment plant operators should consider 
physically removing cells prior to oxidation. This consideration is particularly important 
for chlorination because it can increase disinfection byproduct concentrations when 
oxidizing organic cyanotoxins. Whereas ultraviolet irradiation at doses typical for 
conventional pathogen disinfection is not effective for destroying cyanotoxins, it may be 
a viable option when used in conjunction with hydrogen peroxide to produce hydroxyl 
radicals. Potassium permanganate and ozone may also degrade certain cyanotoxins. In 
addition, activated carbon has been demonstrated to remove cyanotoxins, but tests are 
required for proper powdered activated carbon dosing or granular activated carbon 
column design. 

There have been few peer-reviewed studies specific to cyanobacterial blooms or 
cyanotoxins in Texas, but cyanobacteria have been observed widely throughout the 
state. Several regulatory authorities routinely monitor waterbodies for blooms in and 
around Texas and warn the public accordingly. Case studies in Texas largely involve 
animal deaths as they suffer neurological or gastrointestinal effects after consuming 
water or mats contaminated with cyanotoxins or licking cyanobacteria from their fur. 
These incidents have raised concerns about cyanobacteria occurrences, and municipal 
authorities must understand the features and patterns specific to each waterbody 
because environmental factors are complex and dynamic. 
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1 Introduction 

Cyanobacteria, also known as “blue-green algae,” occur in surface waters across the 
globe. Cyanobacterial toxins, or “cyanotoxins,” released from cyanobacteria are a 
concern for the health of humans and animals. Cyanobacteria growth produces harmful 
algal blooms (HABs) that are typically associated with eutrophication, which is enhanced 
biological production in surface waterbodies as a result of increased nutrient loads. 
Eutrophication often leads to visible blooms, surface scums, and floating plant mats. 
When cyanobacteria in these bloom events die and lyse, they release their cyanotoxins. 
In addition, when this organic matter decays, it can deplete dissolved oxygen in the 
water, causing secondary fish kills. Cyanobacterial biomass can produce offensive taste 
and odor compounds, and also can foul beaches, affecting important tourism industries. 
Other harmful effects arise when cyanobacteria compete with other plankton for 
nutrients such as diatoms, which are important to fish food webs (Steffen et al., 2014). 
Herein, we discuss the properties of cyanobacteria, environmental factors associated 
with cyanobacterial growth, and factors that affect cyanotoxin production. Complex and 
synergistic factors, rather than a single dominant parameter, are responsible for 
cyanobacteria proliferation, and they are typically specific for a given waterbody. HAB 
case studies specific to Texas waterbodies are also presented. 

This literature review cites references from the recent comprehensive work by Chorus 
and Welker (2021). References also include relevant cyanobacteria and cyanotoxin 
citations identified in PubMed, Embase, and Google Scholar. Texas case studies were 
collected from scientific literature, the popular press, and public notifications. 

2 Cyanobacteria Properties 

2.1 Appearances 

Despite the various names that have been used, cyanobacteria are a group of 
prokaryotic organisms. However, they have historically been considered as algae, and 
their established nomenclature follows both bacterial and botanical codes, leading to 
confusion in their taxonomy, which continues even today (Stanier et al., 1978). 
Cyanobacterial cells can be unicellular or filamentous and can exist singularly or as 
colonies. Cell sizes range from 0.2 mm to over 40 mm, and their volumes can vary 
considerably as they form multicellular aggregates. Many species can form mats or 
colonies by embedding single cells in mucilage, a mucous matrix. They exist as plankton 
(suspended in the water column or accumulated at surface) or in the benthos (bottom 
of waterbody). Although cyanobacteria are generally considered photoautotrophic (i.e., 
they use light and inorganic carbon for energy), they can also behave as heterotrophs 
(using nutrients and organic carbon from other organisms) and can produce 
extracellular polysaccharides (EPS), thus forming colonies (Shen et al., 2011; Lea-Smith 
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et al., 2013). Tables 1-4 summarize some morphological characteristics among common 
cyanobacteria in their vegetative (active, reproductive) states, and these characteristics 
are discussed in greater detail below. Appearances can change over their life cycle, in 
particular when they form akinetes (dormant cells that rest when environmental 
conditions do not promote growth and germinate when favorable growth conditions 
return). However, morphology alone may not be sufficient for identifying cyanobacteria. 
Rather, advanced molecular methods are critical to characterizing cyanobacterial 
communities (Kurmayer et al., 2004).  

2.1.1 Color 

Cyanobacteria differ from other bacteria, in that they contain chlorophyll-a, similar to 
plant chloroplasts. They also contain phycobilins, which are accessory pigments bound 
to water-soluble phycobiliproteins (Tandeau de Marsac 2003). For example, 
phycocyanin is blue, thus giving cyanobacteria the “blue-green algae” moniker. 
Phycoerythrin gives some cyanobacteria their red or brown appearance. Carotenoids 
protect chlorophyll-a from oxidative damage and are orange or red. The various ratios 
of phycocyanin, phycoerythrin, carotenoids, and chlorophyll-a can give cyanobacteria 
various colors ranging from chartreuse to blue-green to violet-red (Vidal et al., 2021). 

2.1.2 Bloom formations 

Blooms occur in a variety of forms. In general, blooms refer to high phytoplankton cell 
density that reduces the amount of light passing into a waterbody. Buoyant 
cyanobacteria, namely Microcystis, Dolichospermum, and Aphanizomenon, that 
accumulate at or near the surface produce surface blooms in the form of visible streaks 
and can occur even with low overall cell density. Wind drift at leeward sites can further 
accumulate cells. Scum can form where buoyant cyanobacteria accumulate at the 
surface. Surfaces of very dense scums can dry, and cells can lyse, releasing cyanotoxins, 
as well as pigments and odors. Other cyanobacteria, such as Oscillatoria, tend to remain 
homogeneously distributed in a water column and produce surface scum only under 
extreme stability. Planktothrix, Aphanizomenon, Dolichospermum, and Raphidiopsis cells 
may also accumulate in deeper layers, such as between the upper warm and deep cold 
temperatures, or in low illuminance (Ibelings et al., 2021).  

2.1.3 Benthic mat formations 

Benthic cyanobacteria are common in mats at the bottom of waterbodies. These mats 
typically contain other organisms, such as heterotrophic bacteria and eukaryotic algae, 
as well as sediment. EPS hold these components together in mats (McAllister et al., 
2016). Mature benthic mats with increased biomass trap oxygen produced from 
photosynthesis, which results in the mat becoming buoyant. The dynamic shear forces 
in the waterbody also contribute to mats detaching from the bottom and reaching the 
surface (Ibelings et al., 2021). Even when waters appear clear and cyanotoxin 
concentrations in water are low, floating or beached benthic mats pose health hazards 
for pets and wildlife (Ibelings et al., 2021). 
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Table 1.  Common cyanobacteria morphologies in vegetative states: Toxic planktonic  

Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Anabaenopsis Light blue-green Coiled or straight, 5.3-8.8 µm 
wide, 5.1-9.3 µm long; may have 
heterocysts at terminal ends 

Free-floating filaments, densely 
aggregated; contain gas vesicles 

Ballot et al. (2008) 
Baker et al. (2012) 
Walsby (1972) 

Aphanizomenon Dark brown; 
filaments may 
contain pale blue 
heterocysts 

Cylindrical, 5-6 µm in diameter, 
8-12 µm long 

Unbranched filament, solitary or 
mat forming; contain gas vesicles 

AWWA and WRF (2016) 
Matthews (2021) 
Walsby (1972) 

Cylindrospermopsis Blue-green or brown-
green 

Cylindrical, 1.7-3.0 µm wide, 3-10 
µm long 

Unbranched filament, straight or 
coiled; mucilaginous envelope 
absent; contain gas vesicles 

AWWA and WRF (2016) 
Dordević et al. (2015) 
Shafik et al. (2003) 
Saker and Neilan (2001) 

Dolichospermum Light green Barrel-shaped to spherical, 5.1-
11.5 µm wide, 5.0-10.1 µm long; 
may have round heterocysts 

Solitary, straight filaments; 
contain gas vesicles 

Choi et al. (2018) 

Microcystis Protoplast is pale 
blue-green, but gas 
vesicles make cells 
appear dark or 
brown 

Spherical, 2-5 µm Unicellular and/or irregularly 
shaped colonies surrounded by 
mucilage; contain gas vesicles 

AWWA and WRF (2016) 

Connecticut College (2021) 

Nodularia (planktonic 
species most common 
in brackish waters, 
some species are 
benthic in coastal 
waters without gas 
vesicles) 

Bright blue-green Discoid or barrel-shaped, 4.0-16 
µm wide, 2.0-5.5 µm long; may 
have spherical, brown, blue or 
orange heterocysts 

Straight or slightly coiled 
unbranched filaments; may be 
aggregated into tangled clumps; 
planktonic species contain gas 
vesicles 

Baker et al. (2012) 
Matthews (2021) 
Bolch et al. (1999) 

Planktothrix Green or red Cylindrical, 3.5-10 µm wide, <4 
µm long 

Unbranched filament; contain gas 
vesicles 

AWWA and WRF (2016) 
Baker et al. (2012) 
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Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Pseudanabaena Green or reddish 
black 

Cylindrical, 0.8-3 µm Unbranched filament, solitary or 
agglomerated in very fine, 
mucilaginous mats; contain gas 
vesicles 

AWWA and WRF (2016) 
Baker et al. (2012) 
Acinas et al. (2009) 

Raphidiopsis Pale blue-green, 
yellowish or olive-
green 

Cylindrical, 0.8-4.9 µm wide, 4.1-
20.5 µm long 

Solitary, free-floating filaments 
tapered toward ends; straight, 
waved, or helical; contain gas 
vesicles 

Baker et al. (2012) 
Aguilera et al. (2018) 

Sphaerospermopsis Blue-green Spherical or slightly elongated, 4-
8 µm wide, 4-8 µm long 

Solitary, free floating, coiled or 
straight; contain gas vesicles 

Werner et al. (2012) 

Synechococcus Blue-green or red Cylindrical or rod-shaped, <3 µm 
wide, <22 µm long 

Solitary or in loose colonies; 
contain gas vesicles 

Baker et al. (2012) 
Damerval et al. (1989) 
University of Windsor 
(2021) 

 

Table 2. Common cyanobacteria morphologies in vegetative states: Toxic benthic  

Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Anabaena (planktonic 
species now classified 
as Dolichospermum) 

Blue-green to yellow-
green 

Spherical to oblong, 4-14 µm in 
diameter, 6-12 µm long 

Unbranched filament (beaded 
chain); may form thin, fuzzy mat; 
may have colorless mucilage 

AWWA and WRF (2016) 
Baker et al. (2012) 
Ford et al. (2021) 

Geitlerinema Mostly bright blue-
green, rarely violet or 
brown 

Oblong, 1.7-2.6 µm wide, 2.6-6.4 
µm long 

Unbranched, flexuous or straight 
filament; usually parallel in 
membrana-ceous mats 

Tinpranee et al. (2018) 
Baker et al. (2012) 
Komárek et al. (2003) 

Hydrocoleum Olive, pale green, 
red, pink, violet, 
orange, yellow, or 
brown 

Cylindrical, 3.0-29.1 µm wide, 
0.64-8.2 µm long 

Interwoven filaments form firm or 
loose mats; mats may be flat, 
compact cushions, or upright tufts 

Palinska et al. (2015) 
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Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Lyngbya (some strains 
have gas vesicles and 
can be planktonic as 
well) 

Red, brown, black, 
yellow-brown, 
slightly red, blue, or 
gray 

Cylindrical, 12.8-36.1 µm wide, 
2.4-10.3 µm long 

Unbranched, straight filaments; 
mats resemble fine, silky hair or 
are clumps; may form thick, 
floating balls attached by narrow 
strands to bottom substrate 

Sharp et al. (2009) 
Connecticut College (2021) 
Engene et al. (2018) 
Ford et al. (2021) 

Merismopedia (some 
may be planktonic as 
well) 

Pale or bright blue-
green, rarely reddish 

Spherical to oval, 1.2-6.5 µm in 
diameter 

Cells arranged in rows forming 
flat and rectangular colonies in 
mucilage 

Baker et al. (2012) 
Komárek et al. (2003) 

Microcoleus (in 
streams) 

Bright, dark or 
grayish green; 
occasionally brown, 
yellow or red 

Cylindrical, 3-8 µm wide, 2-6 µm 
long 

Colonies or filaments form thin, 
compact mats or rope/band-like 
structures 

Strunecký et al. (2013) 
Baker et al. (2012) 

Nostoc (in lakes, on 
tree trunks and in 
soggy soil) 

Yellow, brown, black, 
cyan, or emerald 

Square, barrel-shaped, spherical, 
or cylin-drical, 2.0-5.7 µm wide, 
2.8-5.7 µm long 

Slightly curved filaments form 
colonies enveloped by gelatinous 
sheath; colonies can become 
buoyant, even without gas 
vesicles 

Baker et al. (2012) 
Singh et al. (2020) 

Oscillatoria 
(planktonic species 
may be considered 
Planktothrix) 

Black, blue-green, 
green, brown, gray, 
or purple 

Discoid, 1.8-2.4 µm wide, 2.4-4.2 
µm long 

Filaments form leathery or fuzzy 
mats 

Heath et al. (2010) 
Ford et al. (2021) 
Stal et al. (1985) 
Mühlsteinová et al. (2018) 

Phormidium (in 
streams) 

Black, green, brown, 
or red 

Discoid, 3.6-13.2 µm wide, 1.8-
6.6 µm long 

Filaments form leathery mats Heath et al. (2010) 
McAllister et al. (2016) 

Scytonema (can also 
be free-floating) 

Yellow-brown, green, 
blue-green, or gray 

Cylindrical or barrel-shaped, 5-18 
µm wide, 2.5-10 µm long 

Filaments slightly flexuous, often 
coiled and form tangled mats; 
may be widened toward ends; 
often form false branches 

Baker et al. (2012) 
Komárek et al (2013) 
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Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Tychonema 
(tychoplanktonic; in 
lakes) 

Green or pink Cylindrical, isodiametric, 4.5-7 
µm 

Unbranched filaments mainly 
solitary, straight, or coiled 

Baker et al. (2012) 
Matthews (2021) 
Shams et al. (2015) 

 

Table 3. Common cyanobacteria morphologies in vegetative states: Toxic but do not form blooms 

Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Hapalosiphon Green or brown Barrel-shaped, 4.8-5.9 µm wide, 
5.9-8.5 µm long 

Uniseriate trichomes in coiled 
clusters; initially grow on 
substrates, but later float among 
other vegetation 

Baker et al. (2012) 
Nguyen et al. (2017) 

Umezakia Green Cylindrical, spherical or 
ellipsoidal, 3-9 µm wide, 4-10 µm 
long 

Filaments may be solitary, free 
floating, straight, or slightly 
curved, sometimes with true 
branches, with thick mucilaginous 
sheath; may contain gas vesicles 

Niiyama et al. (2011) 

 

Table 4.  Common cyanobacteria morphologies in vegetative states: Forms blooms with novel toxins 

Cyanobacteria Color Shape and Cell Size Cell Aggregation References 

Limnothrix Black, green, brown, 
or pale blue-green 

Discoid, 1.3-2.4 µm wide, 2.4-
10.6 µm long 

Filaments may be solitary or 
entangled to form leathery mats; 
may contain gas vesicles 

Heath et al. (2010) 
Gkelis et al. (2005) 

Gomphosphaeria Blue-green Cells club-shaped or heart-
shaped, colonies 25-110 µm in 
diameter 

Spherical colonies joined in the 
middle by mucilaginous stalks 
that widen at periphery to 
enclose cells 

Baker et al. (2012) 
Komárek and Komárková-
Legnerová (1992) 
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2.2 Geographic Occurrence 

Cyanobacteria can thrive in a wide variety of habitats and adapt to extreme 
environmental conditions. Thus, they are found around the globe and are not restricted 
to a specific geography (Pridmore and Etheredge 1987), although specific environments 
select for specific species (Martiny et al., 2006). While both toxic and nontoxic 
genotypes of a given species often coexist in both planktonic and benthic mats, the 
factors that promote nontoxic vs. toxic strains are still under study (Cadel-Six et al., 
2007). 

2.2.1 Trophic state 

Cyanobacteria occurrence is typically associated with the trophic state of a waterbody. 
Understanding trophic states is important to cyanobacteria management as an indicator 
of water quality. Although trophic state definitions can be subjective, they are typically 
related to the amount of biomass produced. Oligotrophic waterbodies produce little 
phytoplankton biomass, while eutrophic waterbodies produce much more 
phytoplankton biomass. The delineation between an anoxic hypolimnion (bottom of a 
thermally stratified waterbody) and oxygenated waters may further define the 
difference between mesotrophic and eutrophic waterbodies (Carlson and Simpson 
1996; Dodds 2006). Benthic cyanobacteria can occur in oligotrophic waters, whereas 
planktonic varieties do not. Cyanobacterial blooms are rare in mesotrophic waterbodies, 
except for Planktothrix rubescens and detached benthic mats. Cyanobacteria are 
abundant in eutrophic and hypereutrophic waters (Ibelings et al., 2021).  

Trophic states depend on the concentrations of nutrients, especially phosphorus (see 
discussion on Nutrients below), chlorophyll-a as a measure of phytoplankton biomass, 
and water transparency. Table 5 lists commonly referenced features of trophic states, 
with total phosphorus as the primary limiting nutrient, as well as associated chlorophyll-
a concentrations and water transparency as measured from Secchi disc readings 
(Vollenweider and Kerekes 1982). However, trophic state definitions can be refined 
further at the local level. 

Table 5.  Trophic state definitions (adapted from Ibelings et al., 2021) 

Trophic State 

Total 
Phosphorus 
(mean) µg/L 

Chlorophyll-a 
(mean)  
µg/L 

Chlorophyll-a 
(maximum) 
µg/L 

Transparency 
(mean)  
m 

Transparency 
(maximum) m 

Ultraoligotrophic ≤4 ≤1 ≤2.5 ≥6 ≥12 

Oligotrophic ≤10 ≤2.5 ≤8 ≥3 ≥6 

Mesotrophic 10–35 2.5–8 8–25 3–1.5 6–3 

Eutrophic 35–100 8–25 25–75 1.5–0.7 3–1.5 
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Trophic State 

Total 
Phosphorus 
(mean) µg/L 

Chlorophyll-a 
(mean)  
µg/L 

Chlorophyll-a 
(maximum) 
µg/L 

Transparency 
(mean)  
m 

Transparency 
(maximum) m 

Hypereutrophic ≥100 ≥25 ≥75 ≤0.7 ≤1.5 

 

2.2.2 Planktonic cyanobacteria 

Globally, the most abundant cyanobacterium is arguably Prochlorococcus, which is 
common in oligotrophic tropical and subtropical oceans, followed by marine 
Synechococcus and Trichodesium. Because freshwater accounts for only a small fraction 
of global surface water, the percentage of planktonic freshwater cyanobacteria is small 
relative to all cyanobacteria (Garcia-Pichel et al., 2003). Among the planktonic 
freshwater cyanobacteria are Microcystis, which are found worldwide, often in 
temperatures above 15°C, under mesotrophic to eutrophic conditions, in thermally 
stratified lakes (deeper than 6 m), and in more shallow waterbodies (Ibelings et al., 
1991). Planktothrix agardhii is common in shallow, temperate, eutrophic, and 
hypereutrophic lakes in a wide range of temperatures (Suda et al., 2002; Rücker et al., 
1997). However, Planktothrix rubescens, which has a red pigment, is more restricted to 
the metalimnion (zone of rapid temperature change between the hypolimnion and 
epilimnion in a thermally stratified waterbody) where warm surface waters meet cold 
deep layers and are thus sensitive to eutrophication and turbidity, which restricts light 
(Nürnberg et al., 2003). Larger mesotrophic lakes may contain nitrogen-fixing 
Dolichospermum and Aphanizomenon with surface warming, high light, and low 
turbidity (to produce energy for fixing nitrogen) (Reynolds et al., 2002; Porat et al., 
2001). Although Raphidiopsis is considered a tropical cyanobacteria, it has been found in 
a wide range of temperatures (20–35°C) (Briand et al., 2004). Nodularia spumigena 
tends to occur in marine and brackish waters, such as estuaries and coastal lagoons 
(Jones et al., 1994), but a freshwater strain that produced a benthic mat has also been 
reported (Beattie et al., 2000).  

2.2.3 Benthic cyanobacteria 

Oligotrophic freshwater and marine environments that allow light to penetrate to the 
bottom can support benthic cyanobacteria. These varieties attach to sediment 
(epipsammic), stones (epilithic), or macrophytes (epiphytic). Tychoplanktonic 
cyanobacteria also typically occur in benthic zones but can thrive in planktonic zones 
when their benthic habitats are disturbed (Scott and Marcarelli 2012). Benthic Moorea 
(formerly Lyngbya) can be found in shallow marine environments in tropical and 
subtropical zones (Ibelings et al., 2021). Oscillatoriales (Oscillatoria, Planktothrix, 
Microcoleus, Phormidium, Microseira, Moorea, Leptolyngbya, Tychonema, Calothis, and 
Schizothrix) and Chroococcales (Aphanothece and Synechococcus) dominate freshwater 
benthic mats. Nitrogen-fixing Nostocales (Anabaena, Scytonema and Nostoc) are also 
common in benthic mats (Quiblier et al., 2013, Wood et al., 2020). When planktonic 
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cyanobacteria are no longer supported in waters that become clearer, benthic and 
tychoplanktonic cyanobacteria may replace them (Ibelings et al., 2021). 

3 Environmental Factors that Affect Cyanobacteria Growth 

Several environmental factors influence when and where planktonic cyanobacteria are 
likely to grow. Table 6 summarizes the most typical factors, which are discussed in more 
detail below. However, there are many exceptions to these general observations, and 
this table should not be used as a guide for all waterbodies. Although temperature is 
often an important factor, cyanobacteria proliferation varies widely with temperature 
range; the range is waterbody specific and, therefore, is not included in the table. In 
general, most or all of the listed conditions, rather than a single condition, are 
associated with the indicated relative cyanobacterial biomass amount. Note that this 
table does not include cyanobacteria mats attached to surfaces, such as benthic 
cyanobacterial mats. Table 7 summarizes common hypotheses to explain cyanobacteria 
success in freshwater systems (adapted from Mioni et al., 2012). 

Table 6.  Typical generalized waterbody conditions for high cyanobacterial biomass 
(Adapted from Burch et al., 2021). 
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Table 7.  Hypotheses for cyanobacterial success in freshwater systems (adapted 
from Mioni et al., 2012) 

Hypothesis Advantages for Cyanobacteria References 

Nitrogen speciation - Some cyanobacteria can fix nitrogen from the 
atmosphere  

- Nitrogen from ammonium favors non-
nitrogen-fixing cyanobacteria  

- Urea may be more energetically favorable for 
cyanobacteria  

- Other non-nitrogen-fixing cyanobacteria can 
take up nitrate and nitrite 

Schindler et al. (2008) 
Davis et al. (2010) 
Gobler et al. (2016) 
Oliver and Ganf (2000) 

Phosphorus reserves - Cyanobacteria can increase pH, consuming 
oxygen as cyanobacteria degrade and release 
phosphorus bound to sediment 

- Some species in benthic mats release 
phosphorus from sediments, as well 

- Cyanobacteria can store excess phosphorus 
internally 

Xie and Xie (2002) 
Reynolds (2006) 
Wood et al. (2015) 

Low nitrogen to 
phosphorus ratio 

- Ratios may be less of a factor than whether 
nitrogen or phosphorus is rate limiting 

- Cyanobacterial populations can shift to other 
species favored by available nutrients 

Reynolds (1999a,b) 
Chorus and Zessner 
(2021) 

Low light - Some cyanobacteria have lower light 
requirements than other phytoplankton 

- Multiple pigments harvest light in the 500- to 
650-nm spectrum range 

Reynolds et al. (1981) 
Reynolds (1997) 
Wiedner et al. (2007) 

Buoyancy - Many cyanobacteria have gas vesicles that 
make them buoyant to remain in euphotic 
zone 

Medrano et al. (2013) 
Humphries and Lyne 
(1988) 

Temperature - Some cyanobacteria thrive at elevated 
temperatures, while others prefer moderate 
temperatures 

- Elevated temperatures also drive thermal 
stratification and mixing depth; higher 
temperatures promote nutrient release, as 
well 

Paerl and Huisman 
(2008) 
Srivastava et al. (2013) 
Walls et al. (2018) 
Carey et al. (2012) 
Ibelings et al. (2021) 

Hydrodyamics and 
long residence times 

- Buoyant cyanobacteria thrive in thermally 
stratified waterbodies, whereas large, 
shallow, turbulent waterbodies favor species 
that compete well for light  

- Long residence times promote cyanobacteria 
that grow slowly 

Burch et al. (2021) 
Ibelings et al. (2021) 
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Hypothesis Advantages for Cyanobacteria References 

High pH - Cyanobacteria can raise pH during 
photosynthesis  

- They have a variety of systems for carbonate 
uptake and can adapt to environments with 
varying inorganic carbon availability  

- Some cyanobacteria grow more successfully 
at high pH 

Lampert and Sommer 
(2007) 
Chorus and Niesel 
(2011) 
Huisman et al. (2018) 
Sandrini et al. (2014) 
Becker (1994) 

Salinity - Some cyanobacteria are resistant to osmotic 
shock 

Kruk et al. (2017) 
Moisander et al. 
(2002) 

Biological agents and 
grazing 

- Blooms can provide refuge for small fish that 
consume zooplankton, thereby reducing 
grazing pressure 

- Many cyanobacteria are resistant to grazing 
by zooplankton 

- Zebra mussels selectively reject feeding on 
cyanobacteria, giving the cyanobacteria a 
competitive advantage 

Engström-Öst et al. 
(2009) 
Kurmayer and Juttner 
(1999) 
Raikow et al. (2004) 
Vanderploeg et al. 
(2001)  
Dionisio Pires et al. 
(2005) 

Xenobiotics - Calcium can trigger anti-oxidation and EPS 
secretion, increasing cyanotoxin buoyancy  

- Ionic and complexed trace metals can induce 
cyanobacterial growth  

Gu et al. (2020) 
Zhou et al. (2019) 

Overwintering - Some cyanobacteria can bloom in cold 
temperatures and keep waters turbid  

- Other species produce dormant akinetes that 
sink to sediment until being recruited for 
germination when warm temperatures return 

Ibelings et al. (2007) 
Takamura et al. (1984) 
Ihle et al. (2005) 
Karlsson-Elfgren et al. 
(2004) 

 

3.1 Nutrients 

Cyanobacteria, along with other phytoplankton biomass, consist primarily of carbon, 
oxygen, hydrogen, nitrogen, and phosphorus. Oxygen and hydrogen are unlimited in 
water, and carbon concentrations are also not typically limiting. Nutrients enter a 
waterbody from its catchment, also known as a watershed, river basin, and drainage 
area. Catchments include point sources, such as discharges and outfalls, and nonpoint 
sources, such as surface runoff and groundwater inflow. Tile drainage can be an 
important nutrient contributor to waterbodies, and small lakes and ponds are 
particularly susceptible to nutrient deposition effects (Mrdjen et al., 2018a).  
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3.1.1 Nutrient usage, competitive advantage 

Cyanobacteria can be found in all environments where water and nutrients are 
available, even if in small amounts. However, they compete with each other and 
phytoplankton for nutrients, especially phosphorus and nitrogen. They have several 
advantages that favor their proliferation. For example, they store excess phosphorus as 
polyphosphates, which can be used for several cell divisions when external phosphorus 
concentrations are low (Reynolds, 2006). They can also acquire various forms of 
nitrogen, such as nitrate, nitrite, ammonium, and urea, and some can even fix 
atmospheric nitrogen (Gobler et al., 2016; Oliver and Ganf, 2000). Cyanobacteria can 
also store surplus nitrogen as cyanophycin, meaning that even those species that cannot 
fix atmospheric nitrogen may have a competitive advantage over other algae in 
environments where nitrogen concentrations are low (Li et al., 2001). 

These organisms also concentrate carbon, which allows them to efficiently use the 
ribulose bisphosphate carboxylase/oxygenase (RuBisCo) photosynthesis enzyme to fix 
carbon dioxide (CO2). The inorganic carbon in the form of bicarbonate is transported to 
cellular compartments, where carbonic anhydrase transforms the bicarbonate to CO2, 
which the RuBisCo can use. Cyanobacteria varieties have different combinations of the 
carbon uptake systems, which allow them to adapt to environments with varying 
inorganic carbon availability (Sandrini et al., 2014). 

Diverse microbial communities in benthic mats interact when cycling nutrients within 
the mat (Bouma-Gregson et al., 2019). These mats also promote phosphorus release 
from sediment within the mats, which is then available for biomass growth (Wood et al., 
2015). 

3.1.2 Nitrogen 

There has been some debate over whether nitrogen or phosphorus is rate limiting for 
biomass growth. Although adding both nitrogen and phosphorus can increase biomass 
(Elser et al., 2007; Chorus and Spijkerman, 2021), there is growing evidence that 
phosphorus is typically more rate limiting, primarily because nitrogen-fixing organisms 
can utilize inorganic nitrogen from the air (Schindler et al., 2008). Some scholars have 
proposed lowering waterbody nitrogen concentrations to shift cyanobacterial 
community composition to nitrogen-fixing species, but such a strategy may not be 
effective in turbid waters where light availability is limited because nitrogen fixation 
requires high light energy (Kolzau et al., 2014). Cyanobacteria can also take up dissolved 
nitrate, nitrite, and ammonium, and some can reduce nitrate to atmospheric nitrogen 
via denitrification under anoxic conditions (Ibelings et al., 2021). Nitrogen from urea can 
preferentially stimulate Microcystis growth as an energetically favorable nutrient source 
(Davis et al., 2010), although dissolved inorganic nitrogen concentrations greater than 
30–100 µg/L make it unlikely for nitrogen to be the rate-limiting nutrient (Kolzau et al., 
2014).  
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Nitrogen can also enter a waterbody when leached from fertilized soil by runoff and can 
remain in a waterbody when organic matter decays. Excess nitrogen from fertilizer or 
animal manure does not tend to bind with soil but is readily soluble as nitrate (nitrogen 
in urea transforms to ammonium and then to nitrate by nitrification in soil) and leaches 
from soils to nearby waterbodies (Novotny, 2003). However, nitrogen can limit 
phytoplankton growth in some eutrophic shallow waterbodies, especially during late 
summer (Søndergaard et al., 2017). It is important to note that, when nitrogen is the 
rate-limiting nutrient, reducing the phosphorus concentration can make phosphorus 
rate-limiting nutrient instead (Ibelings et al., 2021).  

3.1.3 Phosphorus 

Wastewater, manure fertilizer, and runoff from contaminated soils can provide 
waterbodies with phosphorus. Because phosphorus is more effective than nitrate in 
binding with soil particles, surface soil runoff and erosion are the principal mechanisms 
of entry to waterbodies (Ibelings et al., 2021), although point sources such as 
wastewater discharge can be important as well and easier to control. Sediment is a sink 
for phosphorus, but it can also be a source as it cycles between water and sediment, 
especially in shallow waterbodies with low water exchange rates (Conley et al., 2009; 
Shatwell and Köhler, 2019). Phosphorus, in the form of apatite with soil, settles to 
sediment where it remains over long periods of time. Phosphorus may also be bound to 
iron salts, which dissolve in sediment anaerobic zones, and it can then adsorb to iron- 
and aluminum oxides and minerals in the sediment. During summer stratification, 
anoxic conditions can release iron-bound phosphorus from the sediment. In fact, a 
feedback loop can occur in which cyanobacterial growth raises pH via photosynthesis, 
which consumes oxygen as it degrades and leads to additional phosphorus release from 
the sediment (Xie and Xie, 2002). However, phosphorus bound to organic matter is also 
readily available as organic matter decays (Psenner et al., 1988).  

Sufficiently reducing external phosphorus loads to waterbodies has been shown to 
successfully control cyanobacteria growth in many locations (Phillips et al., 2008; Evans 
et al., 2011; Carvalho et al., 2013; Søndergaard et al., 2017), but complex biological and 
chemical phosphorus cycles within waterbodies can make phosphorus available to 
cyanobacteria years after external loads are reduced (Chorus and Zessner, 2021). 
Phosphorus interactions with soil also occur on land and can affect surface waters with 
runoff (Fox et al., 2016). Many agricultural practices include intensive fertilization so 
that soils can store phosphorus, but soluble phosphorus leaches to nearby waterbodies 
when it exceeds the soil binding capacity (Behrendt et al., 2000). However, some studies 
have reported that reducing only phosphorus in coastal waters and estuaries (e.g., Baltic 
Sea, Wadden Sea, and Gulf of Mexico) has led to excessive nitrogen levels, which may 
promote harmful algal blooms (Conley et al., 2009). 

An understanding of proper phosphorus nomenclature is important when discussing this 
critical nutrient. Cyanobacteria take up soluble reactive phosphate (SRP), also known as 
dissolved inorganic phosphate (DIP) or orthophosphate. However, cyanobacteria quickly 
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take up phosphate released from degrading organic matter, and cyanobacteria can store 
phosphate for up to four cell divisions, even if no SRP is detected. Thus, SRP 
measurements are often a poor indicator of the amount of phosphorus relevant to 
cyanobacterial proliferation. Rather, total phosphate phosphorus drives the amount of 
phosphorus in cells and should be investigated when managing biomass. Although total 
phosphorus (TP) includes mineral forms that are not taken up by organisms, TP often 
represents total phosphate phosphorus. It is also important to note that TP 
concentrations are reported as the phosphorus atom (30.97 g/mol), rather than 
phosphate (PO4, 94.97 g/mol), and mass conversions must account for this (Ibelings et 
al., 2021).  

TP concentrations below 10 µg/L are usually too low for cyanobacteria levels to create 
health concerns. TP concentrations in the range of 20–100 µg/L drive the amount of 
cyanobacteria biomass, and biomass levels rarely increase at higher TP concentrations. 
In fact, higher TP concentrations may drive other resources, such as light, to be rate 
limiting. (Ibelings et al., 2021). However, the type of waterbody also affects the rate-
limiting TP concentration. Some shallow lakes with extensive macrophyte (aquatic 
plants) cover may not develop cyanobacterial blooms, even when TP concentrations are 
100 mg/L (Jeppesen et al., 1991), while large, deep waterbodies can have scums at TP 
concentrations of 20 mg/L, or Planktothrix rubescens in the metalimnion at even lower 
TP concentrations of 10 mg/L (Chorus and Zessner, 2021). 

3.1.4 Nitrogen-to-phosphorus ratios 

Some studies have proposed that cyanobacteria can proliferate when the nitrogen-to-
phosphorus ratio falls below 29 to 1 (Bulgakov and Levich 1999; Harris et al., 2014), 
especially in the ratio range of 10 to 15 (Mur et al., 1999). Pawlik-Skowrónska et al. 
(2013) observed that increasing the nitrogen-to-phosphorus ratio reduced the amount 
of cyanobacterial biomass but increased the cyanobacterial community variety. 
However, other studies reported conflicting results in which nitrogen-to-phosphorus 
ratios were much weaker predictors of cyanobacterial growth than individual nitrogen 
or phosphorus concentrations (Downing  2001). These contradictory findings can be 
explained as either or both nitrogen and phosphorus concentrations possibly being too 
high to be rate limiting, making their ratios irrelevant (Reynolds 1999a,b). 

Despite the tendency for phosphorus to be more rate limiting than nitrogen, there are 
instances in which nitrogen is the rate-limiting factor. Thus, waterbody managers should 
consider site-specific conditions when assessing the roles of nutrients (Chorus and 
Zessner, 2021):  

1. Shallow, well-mixed waterbodies with short-lived (a few days at most) 
thermal stratification can drive phosphorus to cycle between water and 
sediment, making nitrogen a better candidate for controlling biomass 
growth.  
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2. Phosphorus may not be rate limiting when phosphorus concentrations are 
high (i.e., greater than 25–50 mg/L), soluble phosphorus from phytoplankton 
is elevated (i.e., greater than 5–10 mg/L), or phosphorus is released from the 
sediment during the summer, when cyanobacteria proliferate.  

3. Nitrogen concentrations might be targeted for controlling cyanobacteria 
growth if they can be reduced to 200–500 mg/L total nitrogen (TN) and to 
less than 100 mg/L dissolved nitrogen. 

It is important to note that limiting nitrogen input can shift phytoplankton communities 
to nitrogen-fixing varieties, and controlling nitrogen is not an alternative to controlling 
phosphorus. In fact, rate-limiting nitrogen concentrations are seven to ten times greater 
than for phosphorus. Rather, nitrogen limitation is an additional approach for overall 
cyanobacteria management, particularly during summer conditions (Chorus and 
Zessner, 2021).  

3.2 Light 

Because cyanobacteria are photoautotrophs, light is a key resource for their growth. 
When nitrogen and phosphorus are available in excess, greater biomass is produced, 
making waters turbid. Seasonal changes, such as during darker winter months, can also 
drive rate limitations toward light when it is less abundant (Ibelings et al., 2021). 
Planktothrix agardhii and Planktothrix rubescens can outcompete other organisms in 
lower light intensities. Other species, such as Dolichospermum and those from the 
Nostocales order, require greater light irradiation (Wiedner et al., 2007). 

3.2.1 Buoyancy, competitive advantage 

Many species, especially colonial planktonic cyanobacteria, have gas vesicles that give 
them buoyancy. These gas vesicles tend to develop under low irradiance. Furthermore, 
when exposed to light, cyanobacteria produce carbohydrates, which can be stored as 
glycogen. The cyanobacteria, in turn, use glycogen as a ballast and consume it as an 
energy source in darker depths to regain buoyancy (Medrano et al., 2013). These 
features allow them to avoid sinking to the sediment where there is low or no light 
(Ibelings et al., 2021). Eutrophic waterbodies are turbid and limit light penetration to the 
upper euphotic zone. If water mixing is deeper than the euphotic zone where light is 
available, phytoplankton’s access to light for photosynthesis is partially restricted when 
they move deeper than the euphotic zone. However, when the water is calm and mixing 
stops, thermal stratification layers develop, where nonbuoyant plankton sink out of the 
euphotic zone and buoyant cyanobacteria rise to the surface where light is available 
(Humphries and Lyne, 1988). Microcystis has a particularly large vertical migration span, 
making it well suited for deep and intermediate eutrophic lakes (Dokulil and Teubner, 
2000). Buoyancy regulation can also result in different cyanobacterial accumulation 
patterns and, thus, cyanotoxin occurrence (Ibelings et al., 2021). As cyanobacteria with 
tolerance for low illumination intensities bloom, they create a positive feedback loop as 
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they prevent light from reaching competing organisms, allowing them to dominate 
(Burch et al., 2021). 

3.2.2 Light usage, competitive advantage 

Cyanobacteria contain other photosynthetic pigments in addition to chlorophyll-a, 
namely phycocyanin and phycoerythrin. These other pigments harvest light in the 500- 
to 650¬nm range (green, yellow, and orange parts) of the solar spectrum, which other 
phytoplankton do not typically use. Thus, they efficiently harvest light and can grow in 
even low illumination. Planktothrix, a more filamentous variety, is a particularly good 
competitor for light. However, although Microcystis has buoyancy advantages, it forms 
colonies with reduced surface-to-volume ratios, which lowers its overall growth rate 
(Reynolds, 1997). 

3.3 Temperature 

Although there are exceptions, the temperature of a waterbody generally affects 
cyanobacteria growth by: 

1. Driving the thermal stratification and mixing depth 

2. Increasing the cyanobacteria growth with elevated temperature, as with 
other organisms (Visser et al., 2016) 

3. Increasing organic matter degradation with elevated temperature, and 
releasing nutrients (Ibelings et al., 2021). 

Higher temperatures (25°C or above) have been linked to cyanobacteria growth (Paerl 
and Huisman, 2008), although temperature alone may not necessarily be a good 
predictor of blooms (Huber et al., 2012). For example, there are cyanobacteria that can 
bloom in cooler temperatures. Rather, indirect temperature effects can be more 
important than direct effects (Carey et al., 2012). Waterbodies in temperate climates 
thermally stratify in the spring, with increased solar intensity and temperature. Thermal 
stratification determines the mixing depth in which phytoplankton occurs, the 
temperatures and nutrient concentrations in the upper mixing zone, whether 
phytoplankton sinks, whether blooms will accumulate at the surface or remain in 
suspension, and whether nutrients from decaying biomass remain in the sediment or 
are mixed in the water column (Ibelings et al., 2021). For example, buoyant bloom-
forming cyanobacteria, namely Microcystis, are unlikely to proliferate in sustained, well-
mixed waterbodies (Visser et al., 2016).  

Seasonal changes can also shift cyanobacteria community compositions. Wu et al. 
(2014) reported that Microcystis dominated total phytoplankton biomass from May to 
December in a large, shallow, eutrophic lake in China. After July, toxic Microcystis viridis 
and nontoxic Microcystis wesenbergii dominated, and Microcystis viridis became even 
more pronounced from November to January. Water temperature and nutrient 
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concentrations were primarily responsible for Microcystis wesenbergii growth, whereas 
nitrite and nitrate concentrations were most associated with Microcystis viridis 
occurrence, although Microcystis viridis has been associated with cooler winter 
temperatures (Takamura and Watanabe, 1987). Another study reported that Microcystis 
aeruginosa was dominant at higher temperatures (24.7–33.9°C), and Microcystis 
wesenbergii was prominent at lower temperatures (19.6–28.6°C) (Imai et al., 2009).  

Temperature variations can also affect eutrophic waterbodies dominated by 
Planktothrix agardhii. Walls et al. (2018) found that cyanobacterial biomass in such a 
waterbody in Ohio increased with warming from 3 to 18°C but decreased at warmer 
temperatures (20–25°C). Declining biomass led to increased extracellular microcystin 
(MC) concentrations. However, toxin concentrations do not necessarily increase linearly 
with cyanobacterial mass, but rather can be at a maximum when environmental 
conditions for cyanobacterial growth are not optimal (Srivastava et al., 2013; Walls et 
al., 2018). 

Elevated temperatures can also increase phosphorus release and solubility, as well as 
increasing the activity of aquatic animals that resuspend phosphorus from sediment. 
This makes temperature a critical factor in cyanobacteria blooms in artificial freshwater 
aquaculture ponds (Hu et al., 2018). 

3.4 Waterbody Size, Shape, and Hydrodynamics 

Stratification also depends on the size, depth, shape, wind exposure, and water 
exchange rate of a waterbody. Buoyant cyanobacteria do not compete well in large, 
shallow lakes with greater turbulence, especially in the presence of wind. Instead, 
species such as Planktothrix agardhii, which are not strongly buoyant but compete well 
for light, likely thrive under such conditions. Small, deep, thermally stratified lakes, 
particularly those that are sheltered from wind, have minimal turbulence and mixing 
only in the epilimnion (Ibelings et al., 2021). Large, stratified lakes can develop seiches, 
which are temporary standing wave disturbances that can displace species in the 
metalimnion, such as Planktothrix rubescens. Stable stratification in deep waterbodies 
also favors phosphorus released from the sediment to remain near the bottom, whereas 
greater mixing throughout the water column resuspends sediment and its phosphorus 
(Ibelings et al., 2021).  

Waterbodies with regular, well-defined shapes often result in homogeneous water 
quality and plankton composition. Other waterbodies with irregular shorelines, bays, 
and tributaries that separate basins create zones in which water quality and bloom 
formations can vary (Ibelings et al., 2021). 

Water residence time, which is estimated from the inflow, outflow, and waterbody 
volume, can also be an important factor in cyanobacteria proliferation. Cyanobacteria 
generally grow slowly and require sufficient residence times, often in the range of 
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weeks, to establish in large numbers (Burch et al., 2021). Low residence times, typically 
on the order of days, can dilute cyanobacteria sufficiently to lower their ability to 
multiply (Romo et al., 2013). In temperate climates, cyanobacteria with low growth 
rates will not outcompete other algal phytoplankton until late summer, although 
exceptions include Limnothrix and Planktothrix agardhii, which have high biomasses in 
summer (Burch et al., 2021). Residence times also affect nutrient concentrations. One 
study reported that a dilution rate of 10% per day resulted in a nutrient exponential loss 
rate of –0.16 per day, which limits most phytoplankton growth rates (Reynolds et al., 
2012). Long residence times, on the other hand, mean that phosphorus remains 
available for recycling in a waterbody, even if external nutrient loads are reduced 
(Jeppesen et al., 1991).  

Rivers with rapid flows do not tend to support planktonic cyanobacteria. These rivers 
can have increased turbidity from high inorganic particle loads, which limit light 
availability. Benthic grazing and highly fluctuating conditions can also reduce 
cyanobacteria growth rates in these waterbodies (Dokulil, 1994; Caraco et al., 2006). 
However, rivers with long stretches of slow flow have fairly constant hydrophysical 
conditions, and if there are high nutrient concentrations, cyanobacteria that favor well-
mixed shallow waterbodies may emerge, such as Planktothrix agardhii and other fine 
filamentous species (Burch et al., 2021). In addition, lowland rivers with low flows can 
stratify, which may make them suitable for buoyant species such as Dolichospermum 
(Maier et al., 2004). 

3.5 pH and Dissolved Inorganic Carbon 

Most dissolved inorganic carbon exists as CO2 in acidic conditions, as bicarbonate 
(HCO3

-) at pH 8, and as carbonate (CO3
-2) at high pH values (Stumm and Morgan, 1996). 

During increased periods of cyanobacterial photosynthesis when carbon uptake exceeds 
supply, the equilibrium shifts from CO2 to HCO3

- and CO3
-2, increasing the pH (Lampert 

and Sommer, 2007). Thus, large cyanobacterial blooms can cause high pH in a 
waterbody. Nevertheless, cyanobacteria have a variety of systems for carbon uptake 
and can be found in waters with both high and low dissolved carbon dioxide 
concentrations (Huisman et al., 2018). Through carbon overconsumption, they also are 
known to remove more dissolved inorganic carbon than they require for biomass 
growth, because they release organic compounds (Schartau et al., 2007). However, one 
study suggested that increasing dissolved inorganic carbon may suppress toxic 
Microcystis abundance (Yu et al., 2014). 

Cyanobacteria are not typically found in acidic waters (pH below 6) (Chorus and Niesel, 
2011). In fact, some cyanobacteria grow more successfully at high pH than other 
phytoplankton (Becker, 1994). Taub (2021) suggested that, as other phytoplankton also 
consume dissolved inorganic carbon and increase the pH, cyanobacteria may dominate 
when conditions favor formation of CO3

-2. 
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3.6 Salinity 

Salinity has been considered an important factor for cyanobacterial growth, because it 
affects osmotic equilibrium and concentrations of the ions responsible for cell function 
and growth (Silveira and Odebrecht, 2019). Salinity can affect Microcystis aeruginosa 
cluster composition; large-sized colonies with high amounts of mucilage have been 
reported to be more resistant to osmotic shock and can recover their vertical position 
after mixing (Kruk et al., 2017). Moisander et al. (2002) similarly found that 
Anabaenopsis, Anabaena, and Nodularia were able to acclimate to salt stress, although 
Cylindrospermopsis raciborskii had an upper salinity tolerance of 4 g/L NaCl. Low salinity 
levels have been associated with heterocystous cyanobacteria, while high salinities, 
which can reduce ammonia volatilization, can make the high nitrogen content 
detrimental for heterocystous species (Srivastava et al., 2009). Staal et al. (2003) 
explained that heterocysts develop a glycolipid envelope in less saline conditions, which 
gives them a selective advantage over non-heterocystous varieties. Because mucilage 
formation has been linked to toxic varieties, increasing salinity may favor toxic cell 
growth, and may also release intracellular toxins with lysis (Kruk et al., 2017). Salinity 
can also affect akinete production, with increased salinity and low temperatures 
triggering their formation (Silveira and Odebrecht, 2019).  

3.7 Biological Agents 

3.7.1 Resistance to grazing 

Cyanobacteria are resistant to grazing by zooplankton for several reasons, including 
toxicity, filament or colony size, and poor nutritional quality (Kurmayer and Juttner, 
1999), although the extent of such resistance is unclear. Successful grazing depends on 
both the zooplankton and cyanobacteria type (Mohamed, 2001; Wilson et al., 2006), 
and zooplankton can develop a tolerance against cyanotoxins (Ger et al., 2016). 
Moreover, there is evidence that in Microcystis colonies that have been grazed upon by 
protozoans, the remaining ungrazed cells had greater photosynthetic growth from 
protozoan nutrient recycling (Paerl and Millie, 1996). 

3.7.2 Zebra mussel impacts 

Zebra mussels (Dreissena polymorpha) typically intensively filter feed plankton biomass. 
Adults of this invasive species have been observed to selectively reject feeding on toxic 
Microcystis colonies while consuming algae, thus giving cyanobacteria a competitive 
advantage and promoting growth (Raikow et al., 2004, Vanderploeg et al., 2001). Other 
research has demonstrated that zebra mussels consume both toxic and nontoxic 
Microcystis at the same rate and excrete them as pseudofeces (Dionisio Pires et al., 
2005). However, juvenile zebra mussels can be susceptible to cyanotoxins with 
suppressed production and development (Boegehold et al., 2019). One conflicting study 
concluded that such zebra mussel grazing behavior is not consistent, because some 
locations experienced a decrease in Microcystis abundance in the presence of zebra 
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mussels (Horst et al., 2014; Smith et al., 1998). In addition, zebra mussels consume both 
phytoplankton and zooplankton, thereby removing Microcystis competitors (Harke et 
al., 2016a).  

Zebra mussels can also increase dissolved organic phosphorus concentrations, altering 
the nutrient profile to favor Microcystis (Heath et al., 1995; Harke et al., 2016a). Zebra 
mussels may act as a sink for phosphorus (Dolan and Chapra, 2012), as well as a source 
of soluble reactive phosphorus, because they mobilize iron-bound phosphorus from 
sediments in their anoxic guts (Turner, 2010). 

Other waterbody changes attributed to zebra mussels include water chemistry. These 
mussels have been observed to take up calcium and store it in their shells, thus reducing 
water alkalinity. This can result in competition among primary producers for dissolved 
CO2 for which Microcystis has an advantage. Inorganic carbon tends to convert to 
bicarbonate under increased pH conditions. Microcystis can use bicarbonate as carbonic 
anhydrase can convert it to CO2 before it enters the cell, making CO2 even less available 
for competitors (Aizawa and Miyachi, 1986; Kotak et al., 2000; Poste et al., 2013; Rinta-
Kanto et al., 2005). 

3.7.3 Predators 

Despite their resistance to grazing and their toxicity, some organisms can help to control 
cyanobacterial growth (Sigee et al., 1999). Certain fish that consume phytoplankton, 
such as silver carp and bighead carp, can filter feed on cyanobacteria (Zhang et al., 
2008). Fungal parasites, cyanophage, heterotrophic bacteria, actinomycetes, and 
protozoa can contribute to cyanobacteria losses, although these relationships are still 
being studied (Sigee et al., 1999; Ibelings et al., 2021). Manage (2009) reported that (in 
descending order) cyanophages, algicidal bacteria, rotifer Brachionus caliciflorous, 
zooplankton Cephalodella sp., testate amoeba Penardochlamys sp., and protozoa 
Polytomella sp. helped to suppress Microcystis aeruginosa growth in a lake in Japan 
during the normal bloom period. In addition, cyanophage lysis events have resulted in 
MCs being released from blooms (McKindles et al., 2020). Phage life cycles can be 
seasonal—one study found lysogeny genes during early (June to July) and late (October) 
blooms, with lytic genes from late July to October (Stough et al., 2017). However, other 
studies have reached conflicting conclusions where the phage did not appear to reduce 
the size of dense blooms (Rozon and Short, 2013), and some Microcystis can develop 
defenses against phage infections (Harke et al., 2016b). Ndlela et al. (2018) reviewed 
studies using bacteria as cyanobacterial controls and concluded that temperature, pH, 
and nutrient conditions may lead to reduced performance outside of laboratory-scale 
studies. Fabbro et al. (2001) reported that Paramecium successfully grazed on 
Cylindrospermopsis. Amoeba predation on cyanobacteria is varied, and possibly 
preferential for benthic cyanobacteria, although thick mats may inhibit grazing (Ma et 
al., 2016). Furthermore, Wilken et al. (2014) observed that, at low nitrogen 
concentrations, Ochromonas, an algae known to compete with and prey on Microcystis, 
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suppressed Microcystis abundance, but lost control over the Microcystis population at 
high nitrogen loads. 

Zooplankton are an important link in the food web between primary producers, such as 
phytoplankton, and higher trophic levels, such as fish. Cyanobacteria effects on 
zooplankton depend on the species. Increased cyanotoxin production can trigger shifts 
from large-bodied to small-bodied zooplankton, as well as increased rotifer, copepod, 
and small-bodied cladoceran biomass, presumably because these organisms can select 
against toxic cells (Reichwaldt et al., 2013). Other organisms, namely Daphnia, starve in 
the presence of cyanobacteria (Lampert, 1981). In addition, algal blooms, including 
those from toxic cyanobacteria, can serve as a refuge for small fish against predation, 
which then consume large zooplankton and reduce grazing pressure (Engström-Öst et 
al., 2009). 

3.8 Xenobiotics 

Gu et al. (2020) observed that metals can affect Microcystis aeruginosa, with copper 
(>0.1 mg/L) and lead (>1 mg/L) suppressing the growth rate, but that calcium (>100 
mg/L) and cadmium (<0.1 mg/L) facilitated blooms. The high concentrations of calcium 
triggered anti-oxidation, which promoted EPS secretion, aggregated cells, and 
significantly increased their buoyancy. Zhou et al. (2019) reported the order of metal ion 
toxicity to Microcystis aeruginosa as copper > zinc > iron. This same study observed that 
ionic and complexed trace metals induced more cyanobacterial growth than carbonate 
and sulfide-bound species. 

3.9 Overwintering 

In warmer climates, cyanobacteria can bloom year-round. For example, Planktothrix, 
among other cyanobacteria, can bloom even during winter months, keeping the water 
system turbid and preventing light from reaching other algae (Ibelings et al., 2007). 
Other cyanobacteria have overwintering strategies to remain viable in temperate 
climates during the colder months. During autumn and winter, the mixing depth of a 
waterbody deepens, reducing the amount of light available for photosynthesis, which 
reduces the size of cyanobacteria blooms. During this time of bloom reduction, viable 
Microcystis cells may sink to the sediment and become available to form blooms the 
following summer (Takamura et al., 1984; Ihle et al., 2005). Nitrogen-fixing Anabaena, 
Dolichospermum, Aphanizomenon, and Raphidiopsis produce akinetes, which are 
dormant cells that sink and can survive dormant for extended time periods until they 
germinate under favorable conditions (Karlsson-Elfgren et al., 2004). 
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4 Factors that Affect Cyanotoxin Concentrations 

4.1 Cyanotoxins and Genetics 

Cyanobacteria can occur in a wide variety of environments, and therefore, cyanotoxins 
are also found in most waterbodies. Cyanotoxin concentrations are closely related to 
the amount of toxic cyanobacteria biomass. Common cyanobacteria and their dominant 
associated toxins are listed in Tables 8-11 and grouped based on where they are 
typically found (i.e., planktonic vs. benthic). However, these tables are not exhaustive, 
and the scientific community’s understanding of cyanobacteria taxa and their toxins 
continues to evolve. Appendix A provides existing regulatory, as well as candidate 
microcystin-LR (MC-LR), cylindrospermopsin (CYN), and anatoxin-a (ATX) screening 
levels for humans and animals. 

The most common types of cyanotoxins with concentrations relevant to health effects 
are MCs, which are hepatotoxins and dermatoxins (USEPA, 2015). These are typically 
found with Microcystis and Planktothrix (Svirčev et al., 2019). Although Microcystis and 
Planktothrix blooms can contain clones both with and without genes for MC production, 
there are nearly always toxic clones (Kurmayer and Gumpenberger, 2006; Welker et al., 
2004). Oscillatoria, Nostoc, Anabaena, Anabaenopsis, Leptolyngbya, and Geitlerinema 
cyanobacteria also produce MCs (Kaebernick and Neilan, 2001). The mcyA-J gene cluster 
is responsible for MC production in which a multienzyme complex allows MC 
components to be assembled non-ribosomally (Kaebernick and Neilan, 2001; Dittmann 
and Börner, 2005).  

Nodularins (NODs), another type of hepatotoxin, are associated only with Nodularia 
spumigena (Kaebernick and Neilan, 2001). NOD biosynthesis occurs using a non-
ribosomal mechanism similar to that used in MC production (Dittmann and Börner, 
2005; Dittmann and Wiegand, 2006). 

Several types of cyanobacteria are known to produce cylindrospermopsin (CYN), which 
are hepatoxins and nephrotoxins. These species include Cylindrospermopsis raciborskii, 
Aphanizomenon ovalisporum, Raphidiopsis curvata, and Umezakia natans (Banker et al., 
1997; Fristachi and Sinclair, 2008), as well as Nostocales, Stigonematales, and 
Oscillatoriales (Christensen and Khan, 2020). These cyanobacteria also use genes that 
gather CYN components non-ribosomally (Schembri et al., 2001).  
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Table 8.  Common cyanobacteria and their cyanotoxins: Toxic planktonic 

Cyanobacteria 
Microcystin (MC)  
(>250 variantsb) 

Nodularin 
(NOD)  
(8 variantsa) 

Cylindrospermopsin 
(CYN)  
(5 variantse) 

Anatoxin-a (ATX)  
(5 variantsg,n) 

Saxitoxin (STX)  
(20 variantsa) 

Anabaenopsis a,b,c,d,h,l X   X  

Aphanizomenon a,c,d,e,h,k,l X  X X X 

Cylindrospermopsis a,c,d,h,j,l   X X X 

Dolichospermum b,k   X X  

Microcystis a,b,c,d,h.j,l X   X  

Nodularia (planktonic most common 
in brackish waters, some are benthic 
in coastal waters) a,b,c,d,h,j 

 X    

Planktothrix a,b,c,h,j,k,l, X   X X 

Pseudanabaena b,d X     

Raphidiopsis a,b,c,d,e,h,k   X X X 

Sphaerospermopsis a,k   X   

Synechococcus a,b,c,d X     

 

Table 9.  Common cyanobacteria and their cyanotoxins: Toxic benthic 

Cyanobacteria 
Microcystin (MC)  
(>250 variantsb) 

Nodularin 
(NOD)  
(8 variantsa) 

Cylindrospermopsin 
(CYN)  
(5 variantse) 

Anatoxin-a (ATX)  
(5 variantsg,n) 

Saxitoxin (STX)  
(20 variantsa) 

Anabaena (planktonic species now 
classified as Dolichospermum) 
a,b,c,d,j,k,l,m,p 

X  X X X 
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Cyanobacteria 
Microcystin (MC)  
(>250 variantsb) 

Nodularin 
(NOD)  
(8 variantsa) 

Cylindrospermopsin 
(CYN)  
(5 variantse) 

Anatoxin-a (ATX)  
(5 variantsg,n) 

Saxitoxin (STX)  
(20 variantsa) 

Geitlerinema i,m X   X X 

Hydrocoleum f    X  

Lyngbya a,c,d,j,k,l   X  X 

Merismopedia b X     

Microcoleus (in streams) g,k,m    X  

Nostoc (in lakes and on tree trunks 
and soggy soil) a,b,c,d,k,l.m 

X X    

Oscillatoria (planktonic species may be 
considered Planktothrix)  a,b,c,d,e,j,k,m 

X  X X X 

Phormidium (in streams) a,b,c,d,h,j,k,m X   X X 

Scytonema (can also be free-floating) a     X 

Tychonema (tychoplanktonic in lakes) 

m 
   X  

 

Table 10.  Common cyanobacteria and their cyanotoxins: Toxic but do not form blooms 

Cyanobacteria 
Microcystin (MC)  
(>250 variantsb) 

Nodularin 
(NOD)  
(8 variantsa) 

Cylindrospermopsin 
(CYN)  
(5 variantse) 

Anatoxin-a (ATX)  
(5 variantsg,n) 

Saxitoxin (STX)  
(20 variantsa) 

Hapalosiphon b,c,d,j X     

Umezakia a,c,d,h,j,l   X   
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Table 11.  Common cyanobacteria and their cyanotoxins: Forms blooms with novel toxins 

Cyanobacteria 
Microcystin (MC)  
(>250 variantsb) 

Nodularin 
(NOD)  
(8 variantsa) 

Cylindrospermopsin 
(CYN)  
(5 variantse) 

Anatoxin-a (ATX)  
(5 variantsg,n) 

Saxitoxin (STX)  
(20 variantsa) 

Limnothrix n      

Gomphosphaeria o      

References: aBoopathi and Ki (2014), bFastner and Humpage (2021), cFristachi and Sinclair (2008), dGraham (2021), eHumpage and Fastner (2021), fMéjean et al. 
(2010b), gPuddick et al. (2021), hŘezanka and Dembitsky (2006), iRichardson et al. (2007), jSivonen (2009), kTestai (2021), lWestrick et al. (2010), mWood et al. 
(2020), nHumpage et al. (2012), oBerg et al. (1986), pMerel et al. (2013). 
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Anatoxin-a (ATX-a) congeners, including ATX-a, dihydroanatoxin-a (dhATX), 
homoanatoxin-a, and dihydrohomoanatoxin-a (dhHTX), are neurotoxins mainly 
associated with Anabaena, Aphanizomenon, and Planktothrix (Osswald et al., 2007; van 
Apeldoorn et al., 2007). Varieties of ATX-a have also been found widely in benthic mats 
containing Anabaena, Phormidium (Bouma-Gregson et al., 2018), Geitlerinema (Cantoral 
Urizea et al., 2017), Hydrocoleum (Méjean et al., 2010b), and Microcoleus (Puddick et 
al., 2021). However, anatoxin-a(s) (ATX-a(s)) has been associated only with Anabaena 
strains (Merel et al., 2013). Genes responsible for ATX production have been identified, 
although the biosynthesis mechanism is not yet well understood (Cadel-Six et al., 2009; 
Méjean et al., 2010a). Heath et al. (2014) reported that dhATX and dhHTX can account 
for the majority of ATX production by Phormidium. Furthermore, Puddick et al. (2021) 
observed that dhATX is likely among the most toxic ATX congeners by oral ingestion, 
raising concerns about its presence because it has been associated with animal deaths 
around the world. 

In freshwater bodies, saxitoxins (STXs), which are also neurotoxic, are produced 
primarily by Anabaena circinalis and Aphanizomenon flos-aquae, although Lyngba 
wollei, Cylindrospermopsis raciborskii, and Raphidiopsis bookii can also produce STXs 
(Nicholson et al., 2003). Some dinoflagellates can also produce STXs in seawater (Merel 
et al., 2013).  

A recently discovered neurotoxic cyanotoxin, b-N-methylamino-L-alanine (BMAA), can 
be produced by most known groups of cyanobacteria, especially Nostoc (Cox et al., 
2005). Diverse cyanobacteria taxa have genes that code for enzymes involved in BMAA 
biosynthesis (Aráoz et al., 2008). Other marine cyanobacteria neurotoxins have also 
been reported recently as being produced from Moorea producens (formerly Lyngbya 
majuscule), namely antillatoxin, kalkitoxin, and jamaicamide (Aráoz et al., 2010). 

Moorea producens is also known to produce dermatoxins such as aplysiatoxins and 
lyngbyatoxins. However, these have been detected only in marine waters (van 
Apeldoorn et al., 2007). 

4.2 Clonal Composition 

Toxic and nontoxic cyanobacteria often coexist in a given population. Only strains that 
possess the appropriate genes produce cyanotoxins (Kurmayer and Christiansen, 2009), 
and these strains can turn certain genes on or off according to environmental conditions 
(Merel et al., 2013). Many researchers have attempted to correlate cyanotoxin content 
in cells with factors such as nutrients, light, and temperature, but have produced 
contradictory results; potential correlations remain poorly understood, although there 
may be multiple complex triggers for cyanotoxin production (Harke et al., 2016a; 
Ibelings et al., 2021). Additionally, factors that affect overall cyanobacteria biomass 
proliferation, not just individual toxic clones, may primarily affect cyanotoxin 
concentrations (Salmaso et al., 2014). In addition, microscopy is not reliable for 
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identifying cyanobacteria; advanced molecular methods have emerged as the standard 
in characterizing cyanobacterial communities (Kurmayer et al., 2004).  

Although cyanotoxin concentrations typically are correlated to the amount of 
cyanobacteria available, measured as chlorophyll-a or biovolumes of specific taxa, there 
are upper bounds to these relationships below which there can considerable variability 
in the ratios of cyanotoxins to cyanobacterial biomass (Ibelings et al., 2021). 
Composition shifts between clones with different toxin contents can explain this 
variability (Otten et al., 2017). The amount of cyanotoxin in a given clone can also vary 
by a factor of two to four (Ibelings et al., 2021). In natural waters, cyanobacterial toxic 
clonal population dynamics vary over time, thus changing cyanotoxin concentrations 
(Wood and Puddick, 2017). For example, CYN and neurotoxins have been found in 
blooms containing mixtures of toxic and non-toxic clones (Fastner et al., 2001; Wood 
and Puddick, 2017). Kelly et al., (2019) also observed that mats in which cyanobacteria 
were not the dominant taxa still may have concentrations of cyanotoxins, such as ATX 
and NOD, similar to concentrations in cyanobacteria-dominated mats. 

Seasonal patterns of cyanotoxin concentration correlations to biomass can vary among 
waterbodies. Some studies have reported that waterbodies with Planktothrix and 
Microcystis communities had a maximum MC content when blooms first occurred and 
declined throughout the season (Kardinaal et al., 2007; Davis et al., 2009), whereas 
other researchers reported opposite observations (Ibelings et al., 2021). Some 
waterbodies have been observed with stable proportions of toxic clones to total cell 
numbers (Salmaso et al., 2014). There may be occasions when ATX producers 
temporarily dominate waterbodies that contain MC-producing taxa (Bouma-Gregson et 
al., 2018). Furthermore, maximum MC concentrations can result from a high abundance 
of toxic cyanobacteria, even if the amount of MC in the cells is low (Ibelings et al., 2021). 

4.3 Spatial Variability 

Cyanotoxin concentrations are heterogeneous, as are cyanobacterial biomasses. Toxin 
concentrations can vary by several orders of magnitude, even in the same waterbody on 
the same date, depending on where and how the sample is collected. Horizontal 
variability of cyanotoxin concentrations results from the different growth conditions, as 
well as horizontal biomass dislocation, because cells generally concentrate near shore 
and in the downwind sites of a waterbody (Chung et al., 2014; Miller et al., 2019). 
Vertical variability is caused mainly by buoyancy regulation, particularly with buoyant 
cyanobacteria, such as Microcystis, dominating the waterbody surface (Naselli-Flores et 
al., 2007) and Planktothrix rubscens in the metalimnetic layer (Ernst et al., 2009). For 
example, MC concentrations have frequently been found in the mg/L range in 
Microcystis scums, but in much lower concentrations where cyanobacteria were more 
evenly distributed in a water column (Cook et al., 2004; Loftin et al., 2016).  
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4.4 Environmental and Biomass Conditions 

Although cyanobacteria biomass, and therefore cyanotoxin, concentrations are highly 
variable with space and time, there are several factors that can aid in estimating 
cyanotoxin concentrations. These are, in order of increasing estimate uncertainty: 

1. Cyanobacterial biovolumes 
2. Cyanobacterial cell counts 
3. Chlorophyll-a concentrations 
4. Water transparency (Secchi depth) 
5. Nutrient concentrations. 

4.4.1 Cyanobacterial biovolumes 

Biovolume measurements offer the most accurate estimate of maximum expected 
cyanotoxin concentrations in cells. However, variable toxin content among clones makes 
the estimates reasonable only to within an order of magnitude (Ibelings et al., 2021). 
Nevertheless, field samples and laboratory studies have suggested that a maximum 
ratio of 3 mg MC per mm3 biovolume can generally be expected in waterbodies, 
although greater ratios have been reported (Hesse and Kohl, 2001; Znachor et al., 2006).  

Although the maximum CYN cellular content is in the same range as for MCs, 
proportions of CYN dissolved in water can be higher than cell-bound CYN and can persist 
even after the cyanobacteria have been removed. Thus, if cyanobacteria that are known 
to produce CYN, such as Raphidiopsis raciborskii (North America, South America, and 
Australia) and Aphanizomenon (Europe) are present, CYN concentrations should be 
measured directly (Ibelings et al., 2021).  

4.4.2 Cell counts 

Toxic cyanobacteria cell counts can be used, along with associated toxin cell quotas 
(amount toxin per cell, usually expressed as femtogram [fg] per cell), to estimate 
concentrations of cyanotoxins. However, this approach is most suitable for taxa with 
available cell quota estimates, and these data are scarce. Just as with biovolumes, toxin 
content variability also introduces uncertainty using this method (Ibelings et al., 2021). 
Microcystis cell quotas from field samples can range from 1 to 144 fg/cell (Okello et al., 
2010). CYN cell quotas for Raphidiopsis raciborskii and Chrysosporum ovalisporum have 
been reported as 60 fg/cell (Orr et al., 2011) and 191 fg/cell (Vasas et al., 2013), 
respectively. A saxitoxin cell quota of 1.3 picogram (pg) per cell has been found in 
Scytonema (Smith et al., 2011). Cyanotoxins that do not have known cell quotas are 
treated conservatively as MC, because their maximum cellular concentrations are 
similar to those of MCs, although actual concentrations are substantially lower than 
MCs (Ibelings et al., 2021).  
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4.4.3 Chlorophyll-a concentrations 

Chlorophyll-a concentrations measure total phytoplankton organisms, including 
cyanobacteria. Thus, qualitative microscopic analysis would be needed to determine the 
prevalence of cyanobacteria in a sample when using chlorophyll-a as a cyanotoxin 
indicator. Phytoplankton chlorophyll-a content varies with light and nutrient availability, 
which introduces uncertainty to this method. Correcting for phycocyanin, a pigment 
found only in cyanobacteria, can also help to improve the reliability of this method 
(Ibelings et al., 2021). Studies have reported that MC concentrations in cells do not 
normally exceed the chlorophyll-a concentration, and the typical ratio is between 0.1 
and 0.5 (Sinang et al., 2013; Loftin et al., 2016; Mantzouki et al., 2018.) Therefore, a 
conservative approach assumes a maximum ratio of 1 mg MC per mg chlorophyll-a, 
provided it is largely from cyanobacteria (Ibelings et al., 2021). 

4.4.4 Water transparency 

Water transparency is easily measured with a Secchi disk on site and is often correlated 
with phytoplankton and chlorophyll-a concentrations. Subbiah et al. (2019) found that 
increased turbidity was directly related to increased ATX and MC concentrations. 
Although suspended inorganic sediments and humic substances can also affect water 
transparency, high Secchi depths (increased water transparency) generally indicate 
lower cyanobacteria levels and cyanotoxin concentrations in the epilimnion (upper 
layer). Transparency thresholds for cyanobacterial blooms depend on the given 
waterbody or waterbody type, as well as the season (Ibelings et al., 2021). It is 
important to note that Secchi disk readings may not be useful for indicating benthic or 
tychoplanktonic cyanobacteria, as well as Planktothrix rubescens, in the metalimnion. 

4.4.5 Nutrient concentrations 

TP and, often to a lesser extent, TN typically determine the maximum amount of 
phytoplankton biomass. In turn, they can also determine the maximum amount of 
cyanotoxin concentrations (Dolman et al., 2012). For example, Pawlik-Skowrónska 
(2013) found that ATX production was positively correlated with total cyanobacterial 
biomass. However, nutrient concentrations are more useful as long-term factors for 
cyanobacteria blooms and cyanotoxins (Beaver et al., 2014). Nevertheless, research 
continues into the role of nutrients in promoting toxigenic variants. For example, MC-
producing cyanobacteria are resistant to nutrient limitations (Pimentel and Giani, 
2014)—in particular, iron (Sevilla et al., 2008), nitrogen (Horst et al., 2018; Kotak et al., 
2000) and phosphorus (Ginn et al., 2010; Pawlik-Skowrónska et al., 2013). This 
protective mechanism is believed to result from MC binding to proteins under oxidative 
stress that results from nutrient limitations, increasing the fitness of toxic strains 
(Pimentel and Giani, 2014). Nitrogen starvation has been similarly linked to ATX 
production (Neilan et al., 2013). Increased nitrate concentrations can also promote MC 
production in some non-nitrogen-fixing cyanobacteria (Boopathi and Ki, 2014). 
Furthermore, addition of nutrient-rich guano from pelicans to a lake in Greece was also 
demonstrated to increase MC-YR and MC-LR production at the expense of MC-RR, 
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possibly because of micronutrients not otherwise available (Maliaka et al., 2020). 
Nutrient concentrations and forms can affect CYN production as well, with CYN 
production increased from Cylindrospermopsis raciborskii under a lack of a fixed-
nitrogen source, and phosphate addition may favor toxic CYN-producing strains (Burford 
et al., 2014). Inorganic nitrogen may also favor nontoxic Microcystis strains (Davis et al., 
2010). 

Nutrient concentrations can also affect relationships between cyanobacterial species. 
Chia et al. (2018) reported that Microcystis strongly suppressed Anabaena under high 
nitrogen and low phosphorus concentrations, whereas the reverse occurred under low 
nitrogen conditions. When Microcystis had the competitive advantage, it produced 
greater amounts of MC and suppressed ATX production from Anabaena, presumably 
from an allelopathic relationship (where one type of plant inhibits the growth of 
another). Other studies have also suggested that allelopathic interactions, as non-
cyanobacterial phytoplankton competitors, release EPS, which may stimulate MC 
production (Bittencourt-Oliveira et al., 2014; Sinang et al., 2015).  

4.5 Meteorological Conditions 

MC congeners can vary with environmental conditions. Continent-scale temperature 
differences have been suggested as primarily determining cyanotoxin diversity 
(Mantzouki et al., 2018). Taranu et al. (2019) reported that globally MC-LR dominated, 
with strong winds, warm temperatures, and nutrient-rich conditions. MC-LA, which was 
reported more commonly in North America than Europe, was associated with 
intermediate winds, wetter meteorological conditions, and poorer nutrient availability. 
Zhou et al. (2016) similarly observed that short-term high winds that produced 
turbulence in lakes triggered toxic Microcystis species growth, and thus increased 
concentrations of MCs. Another study confirmed that MC-RR and MC-LR dominated in 
high winds when coupled with high temperatures (Mischke, 2003). The increased 
turbulence in this study also raised shear stress, which could have lysed cells and 
released MCs. However, variability exists even within regions—maximum cyanotoxins 
were reported in late summer for some lakes but in early spring for another lake near 
Quebec, Canada (Rolland et al., 2005). 

Ultraviolet (UV) radiation can affect MC production because nontoxic cyanobacteria can 
be more vulnerable to UV than toxic variants (Ding et al., 2013). Phelan and Downing 
(2011) suggested that MCs can protect toxigenic cells against photo oxidation under 
high light intensity. Light and heat stress can similarly promote NOD (Pearson et al., 
2010) and STX production (Boopathi and Ki, 2014). 
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4.6 Xenobiotics 

Lanthanum(III), a rare earth element widely used in electronics and other technology, is 
an emerging contaminant in many waterbodies. This element enters the environment 
through consumer and industrial product disposal via landfills, mining and mineral 
processing discharges, and industrial wastewater effluent (Gwenzi et al., 2018). This co-
pollutant can trigger Microcystis aeruginosa cells to rapidly absorb nutrients, which in 
turn stimulate chlorophyll production, photosynthesis, and MC-LW, MC-LR, and MC-YR 
production (Liu et al., 2020a). Similarly, Wang et al. (2018) demonstrated that iron 
increases Microcystis aeruginosa cell growth, upregulates photosynthetic capacity, and 
promotes MC-LR production. Titanium dioxide nanoparticles are used in many fields, 
including foods, gas sensors, photocatalytic media, paint, cosmetics, and personal care 
products, and are increasingly being released to the environment and waterbodies. At 
reduced pH (6) or temperature (20°C), titanium dioxide nanoparticles can coat 
Microcysts aeruginosa, which hinders light absorption and cellular growth but may 
increase MC-LR production (Wu et al., 2019; Zhang et al., 2020). Furthermore, high 
concentrations of linear alkylbenzene sulfonate, another emerging pollutant that is used 
widely in industrial and domestic applications, increases MC production from 
Microcystis aeruginosa (Wang et al., 2015). The use of low-dose hydrogen peroxide is an 
attractive method to mitigate cyanobacterial blooms, but the simultaneous presence of 
antibiotics may stimulate Microcystis aeruginosa growth and MC synthesis (Liu et al., 
2020b). However, Gao et al. (2020) reported that toxic Microcystis aeruginosa clones 
were more sensitive to pyrogallol, a plant allelochemical, than nontoxic clones; this is 
significant because pyrogallol has been proposed as an anti-cyanobacterial agent. 

5 Drinking Water Concerns 

In general, human health concerns may result from cyanotoxins being released from 
cyanobacterial cells and entering drinking water sources. Seasonal environmental 
changes, predation, viral attacks, and algaecides can lyse cells and release their toxins 
(Westrick et al., 2010). When extracellular cyanotoxins or cyanobacteria containing 
intracellular cyanotoxins enter the intake for a drinking water system, the water must 
be treated or the intake adjusted to prevent cells or toxins from entering the treatment 
facility. Treatment-method efficacy varies among extracellular cyanotoxins, depending 
on their chemical and physical properties, such as hydrophobicity, hydrophilicity, 
molecular size, and functional groups (Westrick et al., 2010). Conventional drinking 
water treatment methods are discussed below in terms of the ability of each to remove 
intracellular (intact cyanobacteria) and extracellular cyanotoxins. In many cases, an 
integrated approach using multiple methods is suitable (Antoniou et al., 2014). 
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5.1 Intake Management 

Because cyanobacterial communities and behaviors are waterbody specific, drinking 
water treatment operators must understand the cyanobacteria patterns when using a 
surface waterbody as a drinking water source. Treatment-plant intake can be adjusted 
to draw water from different depths or at different times to avoid introducing 
cyanobacteria and cyanotoxins into the treatment facility (AWWA and WRF, 2016). 

5.2 Cyanobacterial Cell Removal 

Cyanobacterial cells are fragile, so treatment processes should consider removing the 
cells, when possible, before they release their toxins (AWWA and WRF, 2016; de 
Figueiredo, 2004). Cells can be removed using conventional coagulation, flocculation, 
and sedimentation; dissolved air filtration; and filtration. 

5.2.1 Coagulation, flocculation, sedimentation, and filtration 

Conventional coagulation, flocculation, and sedimentation treatment uses chemical 
coagulants to neutralize cyanobacterial cell negative charges so they can form flocs and 
settle out. This process, especially when followed by filtration, can be effective in 
removing intact cells (Gheraout et al., 2010), although it has also been known to induce 
MC release from cells (Mohamed et al., 2015). The process must be optimized to 
account for variability among cyanobacterial blooms (Ghernaout et al., 2010). Full-scale 
treatment facility operational parameters should be set after conducting jar tests to 
optimize coagulant dose, pH, and settling time (AWWA and WRF, 2016). 

5.2.2 Dissolved air flotation 

Dissolved air flotation (DAF) introduces bubbles into water, and the bubbles attach to 
solid particles, which makes them less dense so they float to the water surface. The 
floated material can be removed by a skimmer (Antoniou et al., 2014). Thus, DAF has 
been demonstrated as effective for removing cyanobacteria with low densities and high 
buoyancy (Teixeira and Rosa, 2007). However, care should be taken to not subject 
cyanobacteria to shearing stresses from the pressurized air, which can damage and lyse 
the cells (Antoniou et al., 2014). In many cases, DAF combined with 
coagulation/flocculation can remove cells more efficiently than coagulation, 
flocculation, and sedimentation alone (Teixeira and Rosa, 2006).  

5.2.3 Membrane filtration 

Membrane filtration, namely microfiltration and ultrafiltration, effectively removes 
cyanobacterial cells by size exclusion, even without upstream coagulation (AWWA and 
WRF, 2016). Nanofiltration and reverse osmosis can remove cyanotoxins as well (AWWA 
and WRF, 2016; Gijsbertsen-Abrahamse et al., 2006). However, coagulation as a 
pretreatment can improve membrane filtration by reducing fouling (Huang et al., 2009). 
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5.3 Oxidants 

The drinking water industry commonly uses oxidants, such as chlorine, UV irradiation, 
potassium permanganate, and ozone, to disinfect and degrade contaminants. These 
oxidants can be introduced at the intake (pre-coagulant), as a filter aid (pre-filter), or as 
a disinfectant (post-filter) (AWWA and WRF, 2016). However, if these oxidants also lyse 
cyanobacterial cells, additional oxidant dosing may be required to account for both 
lysing and reactions with cyanotoxins. Therefore, treatment plant operators should 
consider physically removing cells prior to oxidation processes (Onstad et al., 2007). 

5.3.1 Chlorination and disinfection byproducts 

Chlorine, a common drinking water disinfection agent, has been demonstrated to 
degrade MC, CYN, STX, and NOD, thus reducing water toxicity (Ho et al., 2008; Liu et al., 
2020c; Senogles et al., 2000). ATX-a, on the other hand, appears to resist chlorination 
(Merel et al., 2010). However, chlorine, namely in the form of hypochlorous acid (HOCl), 
can react with organic compounds to produce disinfection byproducts (CDC, 2016). 
Cyanotoxins, which are organic compounds, can thus react with chlorine to form 
disinfection byproducts such as trihalomethanes, haloacetic acids, haloacetonitriles, and 
organic halogens (Liu et al., 2020c; Tsuji et al., 1997). Chlorine added at the intake can 
lyse cyanobacterial cells, increasing extracellular cyanotoxin concentrations (AWWA and 
WRF, 2016). Methods to otherwise achieve compliance with the Disinfection Byproduct 
Rule (DBPR, 40 CFR Sections 141 and 142), such as increasing the pH (which decreases 
chlorine’s rate of cyanotoxin oxidation) and using chloramines and chlorine dioxide 
(which do not degrade cyanotoxins well) may not be effective (AWWA and WRF, 2016). 
Therefore, chlorine disinfection must be optimized if intended to control cyanotoxins 
(Liu et al., 2020c). 

5.3.2 Ultraviolet irradiation 

UV irradiation has been demonstrated to decompose several cyanotoxins (Tsuji et al., 
1995). However, the energies required to photolytically destroy these compounds are 
orders of magnitude greater than those needed for disinfection. Thus, UV treatment is 
not likely effective at inactivating cyanotoxins when the equipment is configured for 
conventional pathogen disinfection (AWWA and WRF, 2016). However, UV may be a 
viable option when used in conjunction with hydrogen peroxide to produce hydroxyl 
radicals for degrading MC, ATX-a, and CYN (Qiao et al., 2005; Song et al., 2009). 
Advanced oxidation using titanium dioxide in visible and UV light requires acidic 
conditions, making it a less feasible option at this time (Choi et al., 2007; Liu et al., 2003; 
Westrick et al., 2010). 

5.3.3 Potassium permanganate 

Each cyanotoxin reacts differently with potassium permanganate. MC-LR reacts 
moderately quickly and is not dependent on pH (Rodríguez et al., 2007a,b). Potassium 
permanganate reacts quickly with ATX-a, especially at pH 8–10 (Hall et al., 2000; 
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Rodriquez et al., 2007b). However, it does not effectively degrade CYN (Rodríguez et al., 
2007b) or STX (Ho et al., 2009).  

5.3.4 Ozone 

Onstad et al., (2007) reported that ozonolysis effectively degrades MC independent of 
pH, and reactions with ATX-a depend on pH when pH values are 7–10, and reactions 
with CYN are pH dependent at levels of 4–10. However, STX is resistant to oxidation by 
ozone (Rositano et al., 2001). 

5.4 Activated Carbon 

There are two principal types of activated carbon used for removing organic compounds 
from drinking water. Powdered activated carbon (PAC) is temporarily added to water at 
the front of a treatment process to remove transient contaminants. Granular activated 
carbon (GAC) is used in fixed flow-through beds. The ability of PAC and GAC to remove 
extracellular cyanotoxins depends on the size of the cyanotoxin molecule, pH, and the 
presence of other organic matter that can compete with activated carbon adsorption 
sites (AWWA and WRF, 2016). Jar testing should be conducted when considering PAC 
treatment to optimize the dose. GAC can be used as both filter media and an adsorber, 
and rapid, small-scale column tests can be used to determine proper GAC column 
design. However, GAC removes cyanotoxins more effectively when used as an adsorber 
rather than a filter (Westrick et al., 2010). MC and CYN can be removed by activated 
carbon with high mesopore capacities, but with various degrees of efficiency (Ho et al., 
2008; Newcombe, 2002). STX have a lower molecular mass and can be adsorbed by 
activated carbon with pores smaller than 1 nm (Ho et al., 2009). Vlad et al. (2019) 
suggested that GAC can be used to remove ATX-a, although additional study is required 
to understand its practical use in natural waters. 

6 Texas Case Studies 

There are few peer-reviewed studies specific to cyanobacterial blooms or cyanotoxins in 
Texas. Nevertheless, cyanobacteria occur widely throughout the state. For example, the 
US Geological Survey Texas Water Science Center (TXWSC) sampled 18 reservoirs, 
representing a variety of physicochemical conditions, and found cyanobacteria in all 
locations, as well as MCs in four reservoirs, CYN in two reservoirs, and STX in one 
reservoir (USGS, 2021a). During 2006 (USGS, 2008) and 2016-2019 (Trevino and 
Peterson, 2020), the US Geological Survey (USGS) and Texas Commission on 
Environmental Quality (TCEQ) used various quantitative and qualitative methods to 
survey up to 41 Texas waterbodies for cyanobacteria, cyanotoxins and taste-and-odor 
compounds. The TXWSC, the National Oceanic and Atmospheric Administration’s 
(NOAA’s) Harmful Algal BloomS Observing System (HABSOS, https://habsos.noaa.gov), 
the Lower Colorado River Authority (LCRA, https://www.lcra.org), and other municipal 

https://habsos.noaa.gov/
https://www.lcra.org/
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authorities routinely monitor waterbodies for blooms in and around Texas and warn the 
public accordingly. Aside from public notifications on cyanotoxin blooms, many of the 
cyanotoxin reports in the popular press stem from the deaths of dogs and other 
animals. Animals can suffer neurological or gastrointestinal effects after consuming 
water contaminated with cyanotoxins or licking cyanobacteria from their fur. Since 
1970, reports of animal deaths have increased markedly, including reports from Texas. 
However, it is unclear whether these case reports resulted from worsening water 
quality or increased public awareness. Most of these canine intoxication cases followed 
inhalation, ingestion, or dermal exposure to fresh water (Backer et al., 2013). Case 
studies of cyanobacterial blooms or cyanotoxin events in Texas are reported below. 

6.1 Large Reservoir in West Texas, 2015–2017 

Subbiah et al. (2019) studied a large reservoir in west Texas over the course of two years 
and found that the most commonly detected cyanotoxins were CYN and STX, while the 
least frequently detected were MCs. That study found that MC and ATX concentrations 
correlated directly with turbidity and total phosphorus, while CYN concentrations 
decreased with increased turbidity. Both CYN and STX were directly correlated with 
water temperature. 

6.2 Buffalo Springs Lake and Lake Ransom Canyon, 2003–2004 

Billam et al. (2006) studied MC-LR concentrations in Buffalo Springs Lake and Lake 
Ransom Canyon, in Lubbock, during 2003–2004. This study found the greatest MC-LR 
concentrations in both lakes during the spring. MC-LR concentrations correlated 
positively with dissolved oxygen and negatively with temperature and pH. 

6.3 National Lakes Assessments, 2007, 2012, and 2017 

The EPA National Lakes Assessments in 2007, 2012, and 2017 surveyed lakes across the 
country for cyanobacteria and cyanotoxins (USEPA, 2021). The 2007 study reported 
CYN, MC, and STX in various Texas lakes. One site contained NOD-R following greater-
than-normal precipitation events and elevated salinity. This was an unexpected finding 
because NOD-R is normally associated with brackish waters, rather than inland fresh 
waters (Loftin et al., 2016). The 2012 study found a variety of cyanobacteria throughout 
Texas lakes. However, it reported cyanotoxins as MC equivalents using an Enzyme-
Linked Immuno-Sorbent Assay (ELISA), and therefore did not list actual cyanotoxins 
(USEPA, 2012). The 2017 study similarly found various cyanobacteria throughout Texas 
but used ELISA tests for CYN and MC (USEPA, 2017). 
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6.4 Lady Bird Lake, 2019 

Canine deaths were reported 30 minutes to 2 hours after swimming in Lady Bird Lake in 
Austin in August 2019. These deaths were attributed to ingesting dhATX, which was 
highly concentrated in metaphyton mats containing Geitlerinema, Limnothrix, 
Pseudanabaena, and Phormidium, as well as other bacteria, protozoa, and sediments. 
The floating mats appeared to have originated from benthic spires during eutrophic 
conditions and low hydrologic flows, and they remained until mid-November when 
cooler temperatures and increased water flows reduced the amount of cyanobacterial 
biomass (Manning et al., 2020). Lady Bird Lake, as well as Lake Austin, continue to be 
monitored for occurrences of cyanobacteria and cyanotoxins, and the city advises the 
public when to avoid allowing dogs to contact the water 
(www.austintexas.gov/page/algae). 

6.5 Lake Travis, 2021 

One dog died in January 2021, and four additional dogs became ill in late February 2021 
after swimming in Lake Travis. There was also a winter storm with sub-freezing 
temperatures in mid-February. Water testing confirmed the presence of cyanobacteria 
and cyanotoxins, namely dhATX. This incident was unexpected, given the colder 
temperatures and relatively low turbidity (Dadamo, 2021). However, it is an example of 
the ability of cyanobacteria to produce cyanotoxins under a wide range of 
environmental conditions. 

6.6 Lake Houston, 2006–2008 

Beussink and Graham (2011) studied the relationships between hydrology and water 
quality, including cyanotoxins (MCs), in Lake Houston. In general, turbidity and nutrient 
concentrations were greatest during the cooler months (October to May) with higher 
water flows (residence times less than 100 days). Cyanobacteria were always present, 
although biovolume was greatest during the summer when temperatures were higher 
than 27°C and water residence times were longer than 400 days. These researchers 
explained that external nutrient loads to the reservoir were associated with suspended 
particles during inflow events, which increased turbidity and limited algal growth. 
Another factor that may have limited cyanobacterial bloom formation was the rapidly 
changing hydrology, which could stratify or destratify over several hours, thus 
preventing the extended periods of stable stratification often associated with 
cyanobacterial blooms. 

6.7 Port Aransas Beach, 2007–2011 

Yu (2011) studied cyanobacterial blooms from sandy intertidal beaches of the south 
Texas Gulf Coast near Port Aransas. Hydrocoleum and Microcoleus dominated the upper 

http://www.austintexas.gov/page/algae
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layer of mature mats and exhibited substantial levels of nitrogenase activity. During dry 
seasons, subsurface cyanobacteria layers contained almost exclusively Microcoleus, but 
did not demonstrate nitrogenase activity. This study suggested that Microcoleus may 
serve as a foundation for intertidal sand mat formations, with Hydrocoleum providing 
structural integrity and nitrogen. 

6.8 Lake Cliff Park and Other Dallas Waterbodies, 2017 

The Dallas Park and Recreation office (2017) advised the public about a Microcystis 
bloom in Lake Cliff Park, as well as how to recognize and avoid it. This notice also 
advised the public on measures to help minimize blooms, such as removing dog waste, 
minimizing fertilizer use, using vegetation buffer strips for erosion, and notifying officials 
when they observe soil runoff. 

6.9 Ingleside, 2016 

In January 2016, Ingleside city officials advised approximately 200 residents to not drink 
and not boil water from their faucets after MC was detected in the drinking water 
system. Analyzing samples from throughout the affected distribution system revealed 
localized MC concentrations in the distribution system, but not the water provider’s 
system. This finding, along with identification of unprotected cross-connections, 
indicated that the drinking water was contaminated by surface water during a cross-
connection event. The City flushed the distribution system and installed new, reduced-
pressure-zone backflow preventers, which reduced the localized MC concentrations but 
also spread the MC concentrations further throughout the distribution system. The City 
then responded by issuing a citywide “do not drink” order for children under the age of 
6 and immunocompromised individuals. After three consecutive rounds of sampling 
with no detected MC, the City lifted the restrictions 13 days after the initial do not 
drink/do not boil order (AWWA, 2016; Hackleman, 2016; Sabawi, 2016). 

6.10 Lake Texoma, 2011–2012 

In 2011–2012, the Grayson County Health Department conducted 16-month 
epidemiological and water survey studies on cyanobacteria in Lake Texoma. Despite 
finding 75–125 cyanobacterial species in this waterbody, the only cyanotoxin found 
during this investigation was CYN, though not at concentrations of public health 
significance. The study also did not find reports of human or animal illness related to 
cyanotoxins in Lake Texoma (Teel et al., 2013). 

6.11 Zebra Mussels 

Given their propensity to cause environmental damage, including their ability to make 
conditions favorable for cyanobacteria, it is unlawful to possess or transport zebra 
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mussels, dead or alive, in Texas. Transporting this invasive species is punishable by a fine 
up to $500 per violation, with more serious punishments for repeat offenses. Zebra 
mussels were first sighted in Texas in 2009, at Lake Texoma (USGS, 2021b). Today, 24 
lakes in Texas have been fully infested with zebra mussels, and they have been found in 
another nine lakes, as well as river reaches downstream of infested lakes. However, 
early and focused intervention at Lake Waco eradicated the zebra mussel, achieving a 
rare feat (Texas Parks and Wildlife Department, 2021). 

7 Conclusions 

Cyanobacteria and their toxins are gaining worldwide attention as they threaten the 
health and safety of animals and humans. Cyanobacteria have been found throughout 
water columns as planktonic species that can aggregate during blooms, as well as in the 
benthos as mats. Historically, they have been considered as algae, given their 
morphologies. However, morphology alone is insufficient to identify cyanobacteria, and 
phylogenetic molecular techniques have become the standard in identifying them. In 
fact, their taxonomy continues to evolve as understanding of their phylogeny improves.  

Environmental factors, such as nutrient concentrations, light availability, temperature, 
waterbody hydrodynamics, pH, salinity, and other organisms, affect cyanobacteria 
growth. Although phosphorus is commonly regarded as rate limiting, nitrogen 
concentrations also can affect cyanobacteria success. Buoyancy, resistance to grazing, 
and overwintering strategies give cyanobacteria competitive advantages with regard to 
how they use resources such as nutrients and light, and these advantages frequently 
enable the cyanobacteria to survive conditions unfavorable to other microorganisms. 
However, cyanobacterial relationships with other organisms and environmental 
conditions are complex and waterbody specific.   

Cyanobacteria strains that possess the appropriate genes produce cyanotoxins, and they 
can co-exist with nontoxic strains. The amount of cyanotoxin in a given clone can also 
vary, and seasonal patterns fluctuate among waterbodies. Environmental conditions are 
suspected of affecting whether these toxigenic genes are upregulated, but they are not 
yet well understood. Nevertheless, even if nontoxic clones dominate a given bloom, the 
toxic clones that are present may still produce toxins in excess of acceptable limits.  

Cyanotoxins may present health concerns to humans when they are released from 
cyanobacterial cells, typically following cell lysis, and enter drinking water sources. 
Drinking water treatment efficacy varies among extracellular cyanotoxins, depending on 
their chemical and physical properties. Conventional drinking water treatment methods 
can remove intracellular (intact cyanobacteria) and extracellular cyanotoxins, although 
an integrated approach using multiple methods could be preferable. 
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Although there have been few peer-reviewed studies specific to cyanobacterial blooms 
or cyanotoxins in Texas, cyanobacteria have been observed widely throughout the state. 
Several regulatory authorities routinely monitor waterbodies for blooms in and around 
Texas and warn the public accordingly. Case studies in Texas largely involve animal 
deaths, when animals suffer neurological or gastrointestinal effects after consuming 
water contaminated with cyanotoxins or licking cyanobacteria from their fur. These 
incidents have raised concerns about cyanobacteria occurrences. Municipal authorities 
charged with controlling such occurrences must understand the features and patterns 
specific to each waterbody because these environmental factors are complex and 
dynamic. 
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Appendix A: Short-Term Cyanotoxin Screening Levels 

Under Task 1 of Work Order No.: 04 (PCR 23048: Comprehensive Literature Review of 
Cyanotoxin Toxicity and Health-Based Screening Level Derivation), ToxStrategies 
conducted a comprehensive literature review of toxicity factors for microcystins, 
cylindrospermopsin, and anatoxin-a (MCs, CYN, and ATX). Screening levels for drinking 
water are based on humans consuming drinking water (µg cyanotoxin per liter of 
water), and on animals consuming surface water (also µg cyanotoxin per liter of water). 
Animals can ingest intracellular cyanotoxins from cyanobacterial mats and crusts, and 
corresponding screening levels are also provided (mg cyanotoxin per kg of dry 
cyanobacteria). Existing regulatory, as well as candidate screening levels for MC-LR, CYN, 
and ATX for certain age groups, species, reference doses (RfD), exposure durations, and 
endpoints presented in the Task 1 report are given in Tables A1–A9. Refer to the Task 1 
report for details on the derivation of these screening levels. 
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